分析 根据幂函数y的图象求出的解析式,再利用幂函数的性质把不等式f(2-a)>f(a-1)化为等价的不等式组,求出解集即可.
解答 解:设幂函数y=f(x)=xα,α∈R;
其图象过点$(2,\sqrt{2})$,
∴2α=$\sqrt{2}$,
解得α=$\frac{1}{2}$,
∴f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$;
∴不等式f(2-a)>f(a-1)可化为
$\sqrt{2-a}$>$\sqrt{a-1}$,
即$\left\{\begin{array}{l}{2-a>a-1}\\{a-1≥0}\end{array}\right.$,
解得1≤a<$\frac{3}{2}$,
∴实数a的取值范围是[1,$\frac{3}{2}$).
故答案为:$[1,\frac{3}{2})$.
点评 本题考查了幂函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 奇函数 | B. | 偶函数 | ||
C. | 既不是奇函数也不是偶函数 | D. | 既是奇函数也是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com