精英家教网 > 高中数学 > 题目详情
1.已知a,b,c∈R+,求证:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc
(2)$\frac{b+c-a}{a}$+$\frac{c+a-b}{b}$+$\frac{a+b-c}{c}$≥3.

分析 (1)将(ab+a+b+1)(ab+ac+bc+c2)转化为(ab+a+b+1)(ab+ac+bc+c2)=(a+1)•(b+1)•(a+c)•(b+c),再结合条件a,b,c是不全相等的正数,应用基本不等式即可.
(2)利用基本不等式,即可证明结论.

解答 证明:(1)∵ab+a+b+1=(a+1)•(b+1),ab+ac+bc+c2=(a+c)•(b+c),
∴(ab+a+b+1)(ab+ac+bc+c2)=(a+1)•(b+1)•(a+c)•(b+c),
∵a,b,c是正数,
∴a+1≥2$\sqrt{a}$>0,b+1≥2$\sqrt{b}$>0,a+c≥2$\sqrt{ac}$>0,b+c≥2$\sqrt{bc}$>0,
又a,b,c是不全相等的正数,
∴(a+1)(b+1)(a+c)(b+c)>2$\sqrt{a}$×2$\sqrt{b}$×2$\sqrt{ac}$×2$\sqrt{bc}$=16abc,
∴(ab+a+b+1)(ab+ac+bc+c2)>16abc.
(2)∵a,b,c∈R+
∴$\frac{b}{a}$+$\frac{c}{b}$+$\frac{a}{c}$≥3,$\frac{c}{a}+\frac{b}{c}+\frac{a}{b}$≥3,
∴$\frac{b}{a}$+$\frac{c}{b}$+$\frac{a}{c}$+$\frac{c}{a}+\frac{b}{c}+\frac{a}{b}$≥6,
∴$\frac{b+c-a}{a}$+$\frac{c+a-b}{b}$+$\frac{a+b-c}{c}$≥3.

点评 本题考查不等式的证明,着重考查基本不等式的应用,(1)关键是将(ab+a+b+1)(ab+ac+bc+c2)转化为(a+1)•(b+1)•(a+c)•(b+c),属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2log${\;}_{\frac{1}{2}}$x的定义域为[2,4],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>0}\\{x+1,x≤0}\end{array}\right.$,h(x)=g[f(x)],求函数h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题P:A={x|x2-5x+4≤0};命题q:B={x|(x+1)(x-a)<0}
(1)求出A的解集
(2)若p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2x,g(x)=2log2(2x+a),a∈R.
(1)求不等式1≤f(x2)+|f(x)-1|≤5的解集;
(2)若$?x∈[\frac{1}{4},\frac{9}{4}]$,f(16x)≥g(x),求实数a的取值范围;
(3)设a>-2,求函数h(x)=g(x)-f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sin2α=$\frac{24}{25}$,α∈(0,$\frac{π}{4}$),则sinα-cosα=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合A={x|(x+1)(x-4)≥0},B={x|2a≤x≤3a+2}.
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z满足(3+4i)z=25,则复数z的虚部为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lg(-x2+2x+3).
(1)求函数f(x)的值域;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案