精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=4y,直线l:y=-1.PA、PB为曲线C的两切线,切点为A,B.令甲:若P在l上,乙:PA⊥PB;则甲是乙(  )条件
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要
A(x1
x21
4
),B(x2
x22
4
)
,由导数不难知道直线PA,PB的斜率分别为kPA=
1
2
x1kPB=
1
2
x2
.进一步得PA:y=
1
2
x1x-
x21
4
.
PB:y=
1
2
x2x-
x22
4
.②,由联立①②可得点P(
x1+x2
2
x1x2
4
)

(1)因为P在l上,所以
x1x2
4
=-1
,所以kPAkPB=
1
2
x1
1
2
x2=
x1x2
4
=-1
,所以PA⊥PB;∴甲是乙的充分条件
(2)若PA⊥PB,kPAkPB=
1
2
x1
1
2
x2=
x1x2
4
=-1
,即yp=-1,从而点P在l上.∴甲是乙的必要条件,
故选A
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为
12

(1)试求抛物线C的方程;
(2)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=
12
y
和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py,过点A(0,4)的直线l交抛物线C于M,N两点,且OM⊥ON.
(1)求抛物线C的方程;
(2)过点N作y轴的平行线与直线y=-4相交于点Q,若△MNQ是等腰三角形,求直线MN的方程.K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步练习册答案