精英家教网 > 高中数学 > 题目详情

【题目】已知α为△ABC的内角,且tanα=﹣ ,计算:
(1)
(2)sin( +α)﹣cos( ﹣α).

【答案】
(1)解:∵α为△ABC的内角,且tanα=﹣ ,∴ = = =﹣
(2)解:由题意可得,α为钝角,tanα= =﹣ ,sin2α+cos2α=1,∴sinα= ,cosα=﹣

∴sin( +α)﹣cos( ﹣α)=cosα﹣sinα=﹣


【解析】(1)直接利用同角三角函数的基本关系,求得要求式子的值.(2)利用同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,求得sinα和 cosα的值,再利用诱导公式可得要求式子的值.
【考点精析】认真审题,首先需要了解同角三角函数基本关系的运用(同角三角函数的基本关系:;(3) 倒数关系:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数 ,若对任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数).

(1)当时,求的最大值;

(2)当时,恒成立,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的离心率为 ,坐标原点O到过点A(0,﹣b)和B(a,0)的直线的距离为 .又直线y=kx+m(k≠0,m≠0)与该椭圆交于不同的两点C,D.且C,D两点都在以A为圆心的同一个圆上.
(1)求椭圆的方程;
(2)求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值10.

1)求实数的值;

2)设,讨论函数在区间上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列和为满足.

)求数列通项公式

求数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的最高点D的坐标( ,2),由D点运动到相邻最低点时函数曲线与x轴的交点( ,0)
(1)求f(x)的解析式
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以(﹣2,0)为圆心且与直线mx+2y﹣2m﹣6=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是(
A.(x+2)2+y2=16
B.(x+2)2+y2=20
C.(x+2)2+y2=25
D.(x+2)2+y2=36

查看答案和解析>>

同步练习册答案