【题目】已知函数(为自然对数的底数)
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当时,若直线与曲线没有公共点,求的最大值.
【答案】(1)(2)当时,函数无极小值;当,在处取得极小值,无极大值(3)的最大值为
【解析】
(1)求出,由导数的几何意义,解方程即可;(2)解方程,注意分类讨论,以确定的符号,从而确定的单调性,得极大值或极小值(极值点多时,最好列表表示);(3)题意就是方程无实数解,即关于的方程在上没有实数解.一般是分类讨论,时,无实数解,时,方程变为,因此可通过求函数的值域来求得的范围.
(1)由,得.
又曲线在点处的切线平行于轴,
得,即,解得.
(2),
①当时,,为上的增函数,
所以函数无极值.
②当时,令,得,.
,;,.
所以在上单调递减,在上单调递增,
故在处取得极小值,且极小值为,无极大值.
综上,当时,函数无极小值
当,在处取得极小值,无极大值.
(3)当时,
令,
则直线:与曲线没有公共点,
等价于方程在上没有实数解.
假设,此时,,
又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.
又时,,知方程在上没有实数解.
所以的最大值为.
解法二:
(1)(2)同解法一.
(3)当时,.
直线:与曲线没有公共点,
等价于关于的方程在上没有实数解,即关于的方程:
(*)
在上没有实数解.
①当时,方程(*)可化为,在上没有实数解.
②当时,方程(*)化为.
令,则有.
令,得,
当变化时,的变化情况如下表:
减 | 增 |
当时,,同时当趋于时,趋于,
从而的取值范围为.
所以当时,方程(*)无实数解, 解得的取值范围是.
综上,得的最大值为.
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为椭圆的右焦点,点在椭圆上,已知椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过右焦点的直线与椭圆相交于,两点,记三条边所在直线的斜率的乘积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某景区内有一半圆形花圃,其直径为,是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.
(1)当时,求的大小;
(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M: ,直线l:,下面五个命题,其中正确的是( )
A.对任意实数k与θ,直线l和圆M有公共点;
B.对任意实数k与θ,直线l与圆M都相离;
C.存在实数k与θ,直线l和圆M相离;
D.对任意实数k,必存在实数θ,使得直线l与圆M相切:
E.对任意实数θ,必存在实数k,使得直线l与圆M相切;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com