精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数)

1)若曲线在点处的切线平行于轴,求的值;

2)求函数的极值;

3)当时,若直线与曲线没有公共点,求的最大值.

【答案】12)当时,函数无极小值;当处取得极小值,无极大值(3的最大值为

【解析】

1)求出,由导数的几何意义,解方程即可;(2)解方程,注意分类讨论,以确定的符号,从而确定的单调性,得极大值或极小值(极值点多时,最好列表表示);(3)题意就是方程无实数解,即关于的方程上没有实数解.一般是分类讨论,时,无实数解,时,方程变为,因此可通过求函数的值域来求得的范围.

1)由,

又曲线在点处的切线平行于,

,,解得

2,

,,上的增函数,

所以函数无极值.

,,,

,;,

所以上单调递减,上单调递增,

处取得极小值,且极小值为,无极大值.

综上,,函数无极小值

,处取得极小值,无极大值.

3)当,

,

则直线:与曲线没有公共点,

等价于方程上没有实数解.

假设,此时,,

又函数的图象连续不断,由零点存在定理,可知上至少有一解,方程上没有实数解矛盾,

,,知方程上没有实数解.

所以的最大值为

解法二:

1)(2)同解法一.

3)当,

直线:与曲线没有公共点,

等价于关于的方程上没有实数解,即关于的方程:

*

上没有实数解.

,方程(*)可化为,上没有实数解.

,方程(*)化为

,则有

,,

变化时,的变化情况如下表:













,,同时当趋于,趋于,

从而的取值范围为

所以当,方程(*)无实数解, 解得的取值范围是

综上,的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求函数的最小值;

(2)对一切 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的右焦点在椭圆上,已知椭圆的离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过右焦点的直线与椭圆相交于两点,记三条边所在直线的斜率的乘积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某景区内有一半圆形花圃,其直径是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.

(1)当时,求的大小;

(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M: ,直线l,下面五个命题,其中正确的是(

A.对任意实数kθ,直线l和圆M有公共点;

B.对任意实数kθ,直线l与圆M都相离;

C.存在实数kθ,直线l和圆M相离;

D.对任意实数k,必存在实数θ,使得直线l与圆M相切:

E.对任意实数θ,必存在实数k,使得直线l与圆M相切;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,右顶点是,离心率为.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点(不同于点),若,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案