精英家教网 > 高中数学 > 题目详情

【题目】2019年高考数学的全国Ⅲ卷中,文科和理科的选做题题目完全相同,第22题考查选修4-4:极坐标和参数方程;第23题考查选修4-5:不等式选讲.某校高三质量检测的命题采用了全国Ⅲ卷的形式,在测试结束后,该校数学组教师对该校全体高三学生的选做题得分情况进行了统计,得到两题得分的列联表如下(已知每名学生只做了一道题):

选做22

选做23

合计

文科人数

50

60

理科人数

40

总计

400

1)完善列联表中的数据,判断能否有的把握认为“选做题的选择”与“文、理科的科类”有关;

2)经统计,第23题得分为0的学生中,理科生占理科总人数的,文科生占文科总人数的,在按分层抽样的方法在第23题得分为0的学生中随机抽取6名进行单独辅导,并在辅导后随机抽取2名学生进行测试,求被抽中进行测试的2名学生均为理科生的概率.

附:,其中.

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)列联表见解析,没有;(2.

【解析】

1)先根据列联表中的数据求出其它未知数,计算卡方,根据附表进行判断;

2)先根据抽样方法确定理科和文科的人数,然后结合古典概率的求解方法可得概率.

1)根据题意填写列联表如下:

选做22

选做23

合计

文科人数

50

10

60

理科人数

350

40

390

总计

400

50

450

由表中数据,计算.

对照临界值表得,没有的把握认为“选做题的选择”与“文、理科的科类”有关;

2)由分层抽样的方法可知在被选取的6名学生中理科生有4名,文科生有2名,记4理科生为2名文科生为

从这6名学生中随机抽取2名,基本事件是:15种,

被抽中的2名学生均为理科生的基本事件为6种,故所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题:

①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

1)若在定义域上是增函数,求的取值范围;

2)若直线是函数的切线,求实数的值;

3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,PQ分别为棱BC和棱CC1的中点,则下列说法正确的是( )

A.BC1//平面AQP

B.平面APQ截正方体所得截面为等腰梯形

C.A1D⊥平面AQP

D.异面直线QPA1C1所成的角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是(

A.展开式中奇数项的二项式系数和为256

B.展开式中第6项的系数最大

C.展开式中存在常数项

D.展开式中含项的系数为45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆.

(1)若抛物线的焦点在圆上,且和圆 的一个交点,求

(2)若直线与抛物线和圆分别相切于点,求的最小值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a

B.设有一个回归方程,变量x增加1个单位时,y平均减少5个单位

C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱

D.在某项测量中,测量结果ξ服从正态分布N1σ2)(σ0),则Pξ1)=0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD外切于,△ACB的内切圆与边AB、BC的切点分别为P、Q,,△ACD的内切圆与边CD、DA的切点分别为R、S. 求证:三条直线PQ、RS、AC共点或平行.

查看答案和解析>>

同步练习册答案