分析 利用公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求解.
解答 解:∵数列{an}的前n项和Sn=n2-2n,
∴a1=S1=1-2×1=-1,
an=Sn-Sn-1=(n2-2n)-[(n-1)2-2(n-1)]=2n-3,
n=1时,上式成立,
∴该数列的通项为an=2n-3.
故答案为:an=2n-3.
点评 本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2a-b=3 | B. | b-a=1 | C. | a=3,b=5 | D. | a-2b=3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1或-2 | B. | -3或-2 | C. | 1或-3 | D. | 1或-3或-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com