精英家教网 > 高中数学 > 题目详情
如图正方体ABCD-A1B1C1D1的棱长为1,点M是棱AA1的中点,点O是BD1的中点,求证:OM是异面直线AA1,BD1的公垂线,并求OM的长.
分析:由题意及正方体的特点可以建立如图示的空间直角坐标系,利用向量的知识证明两条直线垂直;通过
OM
的坐标,直接求出模即可得到OM的长.
解答:解:以点D为坐标原点,建立如图所示空间直角坐标系D-xyz
则A(1,0,0),B(1,1,0),C(0,1,0),
A′(1,0,1),C′(0,1,1),D′(0,0,1)
(1)因为点M是棱AA′的中点,点O是BD′的中点
所以M(1,0,
1
2
),O(
1
2
1
2
1
2
),
OM
=(
1
2
,-
1
2
,0),
AA′
=(0,0,1),
BD′
=(-1,-1,1),
OM
AA′
=0,
OM
BD′
=-
1
2
+
1
2
+0=0
所以OM⊥AA′,OM⊥BD′
又因为OM与异面直线AA′和BD′都相交,
故OM为异面直线AA′和BD′的公垂线;
OM
=(
1
2
,-
1
2
,0),
|OM|=
1
4
+
1
4
=
2
2
点评:本题主要考查异面直线的垂直的判断,正方体中的距离计算等基础知识,考查空间想象能力和逻辑推理能力,应用向量知识解决数学问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图正方体ABCD-A1B1C1D1中,M为BC中点,则直线D1M与平面ABCD所成角的正切值为
 
,异面直线DC与D1M所成角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1的棱长为2,则点B1到直线AC的距离是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)如图正方体ABCD-A1B1C1D1,在它的12条棱及12条面的对角线所在的直线中,选取若干条直线确定平面,在所有的这些平面中:
(1)、过B1C且与BD平行的平面有且只有一个;
(2)、过B1C且与BD垂直的平面有且只有一个;
(3)、存在平面α,过B1C与直线BD所成的角等于30.
其中是真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

甲.如图1,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB:AD=
2
:1,F是AB的中点.
(1)求VC与平面ABCD所成的角;
(2)求二面角V-FC-B的度数;
(3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.
乙、如图正方体ABCD-A1B1C1D1中,E、F、G分别是B1B、AB、BC的中点.
(1)证明:D1F⊥EG;
(2)证明:D1F⊥平面AEG;
(3)求cos<
AE
D1B

注意:考生在(19甲)、(19乙)两题中选一题作答,如果两题都答,只以(19甲)计分.

查看答案和解析>>

同步练习册答案