精英家教网 > 高中数学 > 题目详情
设函数,若f(x)的最小正周期为8.
(Ⅰ)求ω的值;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,2]时y=g(x)的最小值.
【答案】分析:(Ⅰ)化简函数为一个角的一个三角函数的形式,根据周期求ω的值;
(Ⅱ)结合(Ⅰ),求出y=f(x)的表达式,图象关于直线x=1对称,求出函数y=g(x),根据x∈[0,2],求出y=g(x)的最小值.
解答:解:(Ⅰ)f(x)=
=
=(4分)
∵f(x)的最小正周期为,故(6分)
(Ⅱ)由(Ⅰ)知:
在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2-x,g(x)).
由题设条件,点(2-x,g(x))在y=f(x)的图象上,
从而
==(8分)
当0≤x≤2时,
因此当x=2时,y=g(x)在区间[0,2]上取得最小值为:
点评:本题考查三角函数的周期性及其求法,三角函数的最值,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知向量,(ω∈R,ω>0),设函数,若f(x)的最小正周期为
(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(下)3月月考数学试卷(文科)(解析版) 题型:解答题

已知向量,(ω∈R,ω>0),设函数,若f(x)的最小正周期为
(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市西南师大附中高三(下)3月月考数学试卷(文科)(解析版) 题型:解答题

已知向量,(ω∈R,ω>0),设函数,若f(x)的最小正周期为
(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011年上海市嘉定区高考数学一模试卷(理科)(解析版) 题型:解答题

已知向量,其中ω为常数,且ω>0.
(1)若ω=1,且,求tanx的值;
(2)设函数,若f(x)的最小正周期为π,求f(x)在时的值域.

查看答案和解析>>

同步练习册答案