【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:
不应下“禁奥令” | 应下“禁奥令” | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.
(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;
(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.
参考公式与数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】设抛物线Γ的方程为y2=4x,点P的坐标为(1,1).
(1)过点P,斜率为﹣1的直线l交抛物线Γ于U,V两点,求线段UV的长;
(2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;
(3)设AB,CD是抛物线Γ的两条经过点P的动弦,满足AB⊥CD.点M,N分别是弦AB与CD的中点,是否存在一个定点T,使得M,N,T三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
候车时间 | 人数 |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知数列为等差数列,其前n项和为.若,试分别比较与、与的大小关系.
(2)已知数列为等差数列,的前n项和为.证明:若存在正整数k,使,则.
(3)在等比数列中,设的前n项乘积,类比(2)的结论,写出一个与有关的类似的真命题,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的多面体中,平面平面,四边形为边长为2的菱形, 为直角梯形,四边形为平行四边形,且, , .
(1)若, 分别为, 的中点,求证: 平面;
(2)若, 与平面所成角的正弦值为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com