精英家教网 > 高中数学 > 题目详情

a、b是两条异面直线,A是不在a、b上的点,则下列结论成立的是


  1. A.
    过A有且只有一个平面平行于a、b
  2. B.
    过A至少有一个平面平行于a、b
  3. C.
    过A有无数个平面平行于a、b
  4. D.
    过A且平行于a、b的平面可能不存在
D
分析:先将异面直线a和b平移到空间一点A,然后确定一个平面,如果a?α,b?α,则a∥α,b∥α,由于平面α可能过直线a、b之一,即可得到结论.
解答:过点A可作直线a′∥a,b′∥b,
则a′∩b′=A.
∴a′、b′可确定一个平面,记为α.
如果a?α,b?α,则a∥α,b∥α.
由于平面α可能过直线a、b之一,因此,过A且平行于a、b的平面可能不存在.
故选D
点评:本题主要考查了空间中直线与平面之间的位置关系,考查对基础知识的综合应用能力和基本定理的掌握能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、a、b是两条异面直线,直线c是空间任意一条直线,则c(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

15、给出命题:
(1)在空间里,垂直于同一平面的两个平面平行;
(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;
(4)若点P到三角形三个顶点的距离相等,则点P在该三角形所在平面内的射影是该三角形的外心;
(5)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.
其中正确的命题是
(2)(4)
(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

9、给出命题:
(1)在空间里,垂直于同一平面的两个平面平行;
(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;
(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.
其中正确命题个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b是两条异面直线,a⊥b,点P∉a且P∉b.下列命题中:
①在上述已知条件下,平面α一定满足:P∈α,a∥α且b∥α;
②在上述已知条件下,存在平面α,使P∉α,a?α且b⊥α;
③在上述已知条件下,直线c一定满足:P∈c,a∥c且b∥c;
④在上述已知条件下,存在直线c,使P∉c,a⊥c且b⊥c.
正确的命题有
②④
②④
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于直线a、b和平面α、β、γ,则在下列条件中,可判断平面α与β平行的是(  )

查看答案和解析>>

同步练习册答案