精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx,$\sqrt{3}$cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+1.
(1)求当$x∈[0,\frac{π}{2}]$时,f(x)的值域;
(2)若对任意$x∈[0,\frac{π}{2}]$和任意$α∈[\frac{π}{12},\frac{π}{3}]$,$k•\sqrt{1+sin2α}-sin2α≤f(x)+1$恒成立,求实数k的取值范围.

分析 (1)首先根据向量的坐标运算求出函数的解析式,进一步变函数为正弦型函数,最后求出单调区间.
(2)根据函数与的定义域求出函数的值域,进一步利用恒成立问题,求出k的取值范围

解答 解:由已知f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$+1=2(cos2x+$\sqrt{3}$sinxcosx)+1=cos2x+$\sqrt{3}$sin2x+2=2sin(2x+$\frac{π}{6}$)+2;
所以(1)当$x∈[0,\frac{π}{2}]$时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],sin(2x+$\frac{π}{6}$)∈[$-\frac{1}{2}$,1],所以f(x)的值域[1,4];
(2)对任意$x∈[0,\frac{π}{2}]$和任意$α∈[\frac{π}{12},\frac{π}{3}]$,$k•\sqrt{1+sin2α}-sin2α≤f(x)+1$恒成立,
即k|sinα+cosα|-sin2α≤f(x)+1恒成立,又f(x)+1的最小值为2,
所以只要k|sinα+cosα|≤2+sin2α,
所以k≤|sinα+cosα|+$\frac{1}{|sinα+cosα|}$,又$α∈[\frac{π}{12},\frac{π}{3}]$,
所以|sinα+cosα|∈[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$],
|sinα+cosα|+$\frac{1}{|sinα+cosα|}$∈[$\frac{5\sqrt{6}}{6}$,$\frac{3\sqrt{2}}{2}$]
所以k≤$\frac{5\sqrt{6}}{6}$.

点评 本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的值域,恒成立问题的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有(  )
A.770种B.1260种C.4620种D.2940种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设数列{an}是首项为1的等比数列,若{$\frac{1}{2{a}_{n}+{a}_{n+1}}$}是等差数列,则($\frac{1}{2{a}_{1}}$+$\frac{1}{{a}_{2}}$)+($\frac{1}{2{a}_{2}}$+$\frac{1}{{a}_{3}}$)+…($\frac{1}{2{a}_{2014}}$+$\frac{1}{{a}_{2015}}$)的值等于(  )
A.2014B.2015C.3020D.3021

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,c=2acosB,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合P={x,1},Q={0,1,2},P∩Q={0,1},则x为(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究某市高中教育投资情况,现将该市某高中学校的连续5年的教育投资数据进行统计,已知年编号x与对应教育投资y(单位:百万元)的抽样数据如下表:
单位编号x12345
投资额y3.33.63.94.44.8
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析5年来的该高中教育投资变化情况,预测该高中下一年的教育投资约为多少?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(参考公式:回归直线方程式$\hat y=\hat bx+\hat a$,其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\bar x)({y_i}-\bar y})}}{{\sum_{i=1}^n{{{({x_i}-\bar x)}^2}}}},\hat a=\bar y-\hat b\bar x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在一张节目表中,原有6个节目,如果保持这些节目的相对顺序不变,再添加进去两个节目,求共有56种安排方法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy上,点A(1,0),点B在单位圆上,∠AOB=θ(0<θ<π).
(1)若点B(-$\frac{3}{5}$,$\frac{4}{5}$),求tan(θ+$\frac{π}{4}$)的值;
(2)若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}$=$\frac{18}{13}$,求cos($\frac{π}{3}$-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$.
(Ⅰ)求{an}的通项公式an
(Ⅱ)记${b_n}={2^{n-1}}{a_n}$,求$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$.

查看答案和解析>>

同步练习册答案