精英家教网 > 高中数学 > 题目详情
如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
(1)=1
(2)不存在,见解析
解:(1)设椭圆E的方程为=1(a>b>0),
由题意e==1,
又∵c2=a2-b2
解得:c=2,a=4,b=2
∴椭圆E的方程为=1.
(2)假设椭圆E上存在关于直线l对称的相异两点P、Q,令P(x1,y1)、Q(x2,y2),且PQ的中点为R(x0,y0).
∵PQ⊥l,
∴kPQ=-
又∵
两式相减得:
=-=-×(-)=
,③
又∵R(x0,y0)在直线l上,
∴y0=2x0-1,④
由③④解得:x0=2,y0=3,
所以点R与点A是同一点,这与假设矛盾,
故椭圆E上不存在关于直线l对称的相异两点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为,左右焦点分别为.

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是抛物线上不同的两点,点在抛物线的准线上,且焦点
到直线的距离为.
(I)求抛物线的方程;
(2)现给出以下三个论断:①直线过焦点;②直线过原点;③直线平行轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,短轴的一个端点的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·泉州模拟]已知椭圆的焦点是F1、F2,P是椭圆的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(  )
A.圆B.椭圆C.双曲线的一支D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的一条渐近线与圆至多有一个交点,则双曲线离心
率的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案