ÎÒÃÇ°ÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆΪ¡°ºÍгº¯Êý¡±£º
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨1£©ÒÑÖªÃݺ¯Êýf£¨x£©µÄͼÏó¾­¹ýµã£¨2£¬2£©£¬ÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£¿
£¨2£©ÅжϺ¯Êýh(x)=
1-x2(x¡Ý1)
2-2x(x£¼1)
ÊÇ·ñÊǺÍгº¯Êý£¿
£¨3£©Èôº¯Êý¦Õ(x)=
x2-1
+t(1¡Üx¡Ü
6
2
)
ÊǺÍгº¯Êý£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÀûÓÃÃݺ¯Êýf£¨x£©µÄͼÏó¾­¹ýµã£¨2£¬2£©£¬Çó³öº¯ÊýµÄ±í´ïʽ£¬È»ºóÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£®
£¨2£©Ö±½ÓÀûÓÃж¨Ò壬ÅжϺ¯Êýh(x)=
1-x2(x¡Ý1)
2-2x(x£¼1)
ÊÇ·ñÂú×ãºÍгº¯ÊýµÄ¶¨Ò壬¼´¿ÉÍƳö½á¹û£»
£¨3£©ÀûÓÃж¨Ò壬º¯Êý¦Õ(x)=
x2-1
+t(1¡Üx¡Ü
6
2
)
ÊǺÍгº¯Êý£¬ÍƳö¹Øϵʽ¼´¿ÉÇóʵÊýtµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©Éèf£¨x£©=x¦Á£¨¦Á¡ÊR£©£¬ÓÉf£¨2£©=2¦Á=2£¬µÃ¦Á=1£¬f£¨x£©=x£¬g£¨x£©=x+2ÔÚRÉÏÊÇÔöº¯Êý£¬
Áî
g(p)=p+2=p2
g(q)=q+2=q2
(p£¼q)
£¬µÃp=-1£¬q=2
¹Êg£¨x£©=f£¨x£©+2ÊǺÍгº¯Êý£®                  ¡­£¨4·Ö£©
£¨2£©Ò×µÃh£¨x£©ÎªRÉϵļõº¯Êý£¬
¢ÙÈôp£¼q£¼1Ôò
h(p)=2-2p=q2
h(q)=2-2q=p2
£¬Ïà¼õµÃp+q=2Óëp£¼q£¼1ì¶Ü£»
¢ÚÈô1¡Üp£¼qÔò
h(p)=1-p2=q2
h(q)=1-q2=p2
£¬p2+q2=1Óë1¡Üp£¼qì¶Ü£»
¢ÛÈôp£¼1¡ÜqÔò
h(p)=2-2p=q2
h(q)=1-q2=p2
£¬p=1Óëp£¼1ì¶Ü£®
¹Êh£¨x£©²»ÊǺÍгº¯Êý£®                ¡­£¨8·Ö£©
£¨3£©¦Õ(x)=
x2-1
+t
ÔÚ[1£¬
6
2
]
ÉÏÊÇÔöº¯Êý£¬
Óɺ¯Êý¦Õ(x)=
x2-1
+t(1¡Üx¡Ü
6
2
)
ÊǺÍгº¯ÊýÖª£¬
º¯Êý¦Õ£¨x£©ÔÚ[1£¬
6
2
]
ÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
¡à
¦Õ(p)=
p2-1
+t=p2
¦Õ(q)=
q2-1
+t=q2

¡àp2£¬q2(1¡Üp2£¼q2¡Ü
3
2
)
ÊÇ·½³Ì
m-1
+t=m
ÔÚÇø¼ä[1£¬
3
2
]
ÄÚµÄÁ½¸ö²»µÈʵ¸ù
?x2-x+1-t=0ÔÚÇø¼ä[0£¬
2
2
]
ÄÚµÄÁ½¸ö²»µÈʵ¸ù£¬
(Áî
m-1
=x)
?
¡÷=1-4(1-t)£¾0
0£¼
1
2
£¼
2
2
1-t¡Ý0
1
2
-
2
2
+1-t¡Ý0
?t¡Ê(
3
4
£¬
3-
2
2
]
¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éж¨ÒåµÄÀí½âÒÔ¼°Ó¦Ó㬿¼²éº¯ÊýÓë·½³ÌµÄ¹Øϵ£¬º¯ÊýµÄµ¥µ÷ÐÔÓ뺯ÊýµÄ¶¨ÒåÓòÓ뺯ÊýµÄÖµÓòµÄ×ÛºÏÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=log
1
3
x
£¬
£¨1£©µ±x¡Ê[
1
3
£¬3]
ʱ£¬Çóf£¨x£©µÄ·´º¯Êýg£¨x£©£»
£¨2£©Çó¹ØÓÚxµÄº¯Êýy=[g£¨x£©]2-2ag£¨x£©+3£¨a¡Ü3£©µ±x¡Ê[-1.1]ʱµÄ×îСֵh£¨a£©£»
£¨3£©ÎÒÃÇ°ÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆΪ¡°ºÍгº¯Êý¡±£º
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨¢ñ£©Åжϣ¨2£©ÖÐh£¨x£©ÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿ÈôÊÇ£¬Çó³öp£¬qµÄÖµ»ò¹Øϵʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©Èô¹ØÓÚxµÄº¯Êýy=
x2-1
+t£¨x¡Ý1£©ÊÇ¡°ºÍгº¯Êý¡±£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÖØÇìÊиßÒ»12ÔÂÔ¿¼ÊýѧÊÔ¾í ÌâÐÍ£º½â´ðÌâ

(12·Ö)ÒÑÖªº¯Êý£¬

(1)µ±Ê±£¬ÇóµÄ·´º¯Êý£»

(2)Çó¹ØÓڵĺ¯Êý µ±Ê±µÄ×îСֵ£»

(3)ÎÒÃÇ°ÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆΪ¡°ºÍгº¯Êý¡±£º¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼äʹµÃº¯ÊýÔÚÇø¼äÉϵÄÖµÓòΪ.

(¢ñ)ÅжÏ(2)ÖÐÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿ÈôÊÇ£¬Çó³öµÄÖµ»ò¹Øϵʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»

(¢ò)Èô¹ØÓڵĺ¯ÊýÊÇ¡°ºÍгº¯Êý¡±£¬ÇóʵÊýµÄÈ¡Öµ·¶Î§.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄêÖØÇìÒ»ÖиßÒ»£¨ÉÏ£©ÆÚÄ©ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇ°ÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆΪ¡°ºÍгº¯Êý¡±£º
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨1£©ÒÑÖªÃݺ¯Êýf£¨x£©µÄͼÏó¾­¹ýµã£¨2£¬2£©£¬ÅжÏg£¨x£©=f£¨x£©+2£¨x¡ÊR£©ÊÇ·ñÊǺÍгº¯Êý£¿
£¨2£©ÅжϺ¯ÊýÊÇ·ñÊǺÍгº¯Êý£¿
£¨3£©Èôº¯ÊýÊǺÍгº¯Êý£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ѧÄêÖØÇìÒ»ÖиßÒ»£¨ÉÏ£©12ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êý£¬
£¨1£©µ±Ê±£¬Çóf£¨x£©µÄ·´º¯Êýg£¨x£©£»
£¨2£©Çó¹ØÓÚxµÄº¯Êýy=[g£¨x£©]2-2ag£¨x£©+3£¨a¡Ü3£©µ±x¡Ê[-1.1]ʱµÄ×îСֵh£¨a£©£»
£¨3£©ÎÒÃÇ°ÑͬʱÂú×ãÏÂÁÐÁ½¸öÐÔÖʵĺ¯Êý³ÆΪ¡°ºÍгº¯Êý¡±£º
¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®
£¨¢ñ£©Åжϣ¨2£©ÖÐh£¨x£©ÊÇ·ñΪ¡°ºÍгº¯Êý¡±£¿ÈôÊÇ£¬Çó³öp£¬qµÄÖµ»ò¹Øϵʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©Èô¹ØÓÚxµÄº¯Êýy=+t£¨x¡Ý1£©ÊÇ¡°ºÍгº¯Êý¡±£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸