精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

【答案】(I);(II)详见解析.

【解析】试题分析:

(1)利用题意求得 ,椭圆的方程为

(2)首先讨论当的情况,否则联立直线与椭圆的方程,结合直线的特点整理可得直线与椭圆有且只有一个交点.

试题解析:(Ⅰ)依题意,设椭圆的方程为,焦距为

由题设条件知,

所以 ,或 (经检验不合题意舍去),

故椭圆的方程为

(Ⅱ)当时,由,可得

时,直线的方程为,直线与曲线有且只有一个交点

时,直线的方程为,直线与曲线有且只有一个交点

时,直线的方程为,联立方程组

消去,得.①

由点为曲线上一点,得,可得

于是方程①可以化简为,解得

代入方程可得,故直线与曲线有且有一个交点

综上,直线与曲线有且只有一个交点,且交点为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|2x﹣a|,g(x)= (a∈R),若0<a<12,且对任意t∈[3,5],方程f(x)=g(t)在x∈[3,5]总存在两不相等的实数根,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

(1)证明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣2,0),B(2,0),C(0,2),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(
A.(0,
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,图中阴影部分(梯形剪去一个扇形)绕AB旋转一周形成一个旋转体.
(1)求该旋转体的表面积;
(2)求该旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.
(1)求证:对m∈R,直线l与圆C总有有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若对于任一实数x,f(x)与g(x)至少有一个为负数,则实数m的取值范围是(
A.(﹣4,﹣1)
B.(﹣4,0)
C.(0,
D.(﹣4,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为l5,乙组数据的平均数为16.8,则x+y的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据按从小到大顺序排列,得到﹣1,0,4,x,7,14中位数为5,则这组数据的平均数为 , 方差为

查看答案和解析>>

同步练习册答案