【题目】已知向量 和 ,其中 , ,k∈R.
(1)当k为何值时,有 ∥ ;
(2)若向量 与 的夹角为钝角,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F1 , 右焦点为F2 . 若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左右焦点分别为F1 , F2 , 且F2为抛物线 的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为 和4.
(1)求C1和C2的方程;
(2)直线l1过F1且与C2不相交,直线l2过F2且与l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x轴上方,求四边形AF1F2C的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是 . (填写所有正确命题的序号) ①若a∥b,a∥α,则b∥α; ②若a∥b,aα,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1= ,an+1= (n∈N*).
(1)设bn= ﹣1,证明:数列{bn}是等比数列,并求数列{an}的通项公式an;
(2)记数列{nbn}的前n项和为Tn , 求证:Tn<4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某餐馆一天中要购买A,B两种蔬菜每斤的价格分别为2元和3元,根据需要,A种蔬菜至少要买6斤,B种蔬菜至少要买4斤,而且一天中购买这两种蔬菜的总费用不能超过60元.
(1)写出一天中A种蔬菜购买的数量x和B种蔬菜购买的数量y之间的不等式组;
(2)在下面给定的坐标系中画出(1)中不等式组表示的平面区域(用阴影表示),并求出它的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M(﹣2,0),N(2,0),动点P满足条件 .记动点P的轨迹为W.
(1)求W的方程;
(2)若A,B是W上的不同两点,O是坐标原点,求 的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com