精英家教网 > 高中数学 > 题目详情
(2010•温州一模)在空间直角坐标系O-xyz中,称球面S:x2+y2+z2=1上的点N(0,0,1)为球极,连接点N与A(x,y,0)的直线交球面于
A′(x′,y′,z′),那么称A′为A在球面上的球极射影,下列说法中正确的是
(1),(2),(3)
(1),(2),(3)

(1)xOy平面上关于原点对称的两个点的球极射影关于z轴对称;
(2)在球极射影下,xOy平面上的点与球面S上的点(除球极外)是一一对应的;
(3)点(
1
2
3
2
,0)的球极射影为该点本身;
(4)点(2,1,0)的球极射影为(
2
3
1
3
,-
2
3
).
分析:(1)xOy平面上关于原点对称的两个点的球极射影与点N构成一个等腰三角形;(2)由球极射影的概念知,在球极射影下,xOy平面上的点与球面S上的点(除球极外)是一一对应的;(3)点(
1
2
3
2
,0)在球面S:x2+y2+z2=1上;(4)点(2,1,0)的球极射影为(
2
3
1
3
2
3
).
解答:解:(1)∵xOy平面上关于原点对称的两个点的球极射影与点N构成一个等腰三角形,
等腰三角形的顶点是N,等腰三角形的另外两个点就是xOy平面上关于原点对称的两个点的球极射影,
∴它们关于z轴对称.故(1)正确;
(2)由球极射影的概念知,在球极射影下,xOy平面上的每一个点都在球面上有一个唯一对应的点;
反之,除球极N(0,0,1)之处,球面上的每一个点在xoy平面上都有唯一对应的点.
∴在球极射影下,点xOy平面上的点与球面S上的点(除球极外)是一一对应的.
故(2)正确;
(3)∵点(
1
2
3
2
,0)在球面S:x2+y2+z2=1上,
∴点(
1
2
3
2
,0)的球极射影还是点(
1
2
3
2
,0)
∴它的球极射影为该点本身.故(3)正确;
(4)∵点(2,1,0)的球极射影为(
2
3
1
3
2
3
).
而(
2
3
1
3
2
3
)与(
2
3
1
3
,-
2
3
)不重合.
∴(4)不正确.
故正确答案为:(1),(2),(3).
点评:本题考查空间中的点的坐标的应用,解题时要认真审题,正确理解球极射影这个新定义,注意转化化归思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•温州一模)已知y=f(x)是奇函数,当x>0时,f(x)=4x则f(-
12
)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,为DB的中点,
(Ⅰ)证明:AE⊥BC;
(Ⅱ)线段BC上是否存在一点F使得PF与面DBC所成的角为60°,若存在,试确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知a,b是实数,则“a=1且b=1”是“a+b=2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知α∈(
π
2
,π),sinα=
3
5
,则sin2α等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知B1,B2为椭圆C1
x2
a2
+y2=1(a>1)
短轴的两个端点,F为椭圆的一个焦点,△B1FB2为正三角形,
(I)求椭圆C1的方程;
(II)设点P在抛物线C2:y=
x2
4
-1
上,C2在点P处的切线与椭圆C1交于A、C两点,若点P是线段AC的中点,求AC的直线方程.

查看答案和解析>>

同步练习册答案