精英家教网 > 高中数学 > 题目详情
A.选修4-1:几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC
交于点D.求证:ED2=EB•EC.
B.选修4-2:矩阵与变换
求矩阵M=
-14
26
的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于点.A,B,C,求线段AB的长.
D.选修4-5:不等式选讲
对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.
分析:A.由弦切角定理,得∠CAE=∠CBA,结合AD是∠BAC的平分线和三角形的外角定理,得EA=ED.最后根据切割线定理结合等量代换,得ED2=EB•EC.
B.根据公式列出f(λ)=0,可解出两个特征值λ1=7,λ2=-2.再结合条件,列出特征向量满足的方程组,将解出的x、y值变成列矩阵,即可得到属于这两个特征值特征向量.
C.将直线l与曲线C的极坐标方程化成直角坐标方程,联解可得交点分别为A(1,-2)和B(9,6),最后用平面内两点之间的距离公式,可算出线段AB的长.
D.以x-1和y-2为基本量,利用绝对值三角不等式可得|x-y+1|≤|x-1|+|y-2|,结合已知条件不难得到|x-y+1|的最大值.
解答:解:A.∵EA是圆的切线,AC为过切点A的弦,∴∠CAE=∠CBA.
又∵AD是∠BAC的平分线,∴∠BAD=∠CAD
∴∠DAE=∠DAC+∠EAC=∠BAD+∠CBA=∠ADE
∴△EAD是等腰三角形,得EA=ED.
又∵EA2=EC•EB,∴ED2=EB•EC.
B.由题意,得f(λ)=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2)
由f(λ)=0,得λ1=7,λ2=-2
根据
(7+1)x-4y=0
-2x+(7-6)y=0
,可得
x=1
y=2
,所以属于λ1=7的一个特征向量为
1 
2 

根据
(-2+1)x-4y=0
-2x+(-2-6)y=0
,可得
x=4
y=-1
,所以属于λ2=-2的一个特征向量为
4 
-1 


C、ρcos(θ+
π
4
)=
3
2
2
化简,得ρcosθ-ρsinθ=3
∵ρcosθ=x,ρsinθ=y,∴直线l的直角坐标方程为x-y-3=0
同理,抛物线ρsin2θ=4cosθ化成直角坐标方程y2=4x
将直线方程与抛物线方程联解,得
x=1
y=-2
x=9
y=6

∴直线与抛物线交于点A(1,-2)和B(9,6)
由两点的距离公式,得线段AB的长为
(1-9)2+(-2-6)2
=8
2

D、∵|x-1|≤1,|y-2|≤1,
∴|x-y+1|=|(x-1)-(y-2)|≤|x-1|+|y-2|≤1+1=2,
故|x-y+1|的最大值为2,当且仅当 x=2,y=3,或x=0,y=1时取等号.
点评:本题主要考查了简单曲线的极坐标方程、特征值与特征向量的计算、与圆有关的比例线段和绝对值三角不等式等知识,考查了同学们对理科选修知识的掌握,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=
.
10
02
.
,N=
.
1
2
0
01
.
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1(x≥1)
x2-y2=1(x≥1)

(C)选修4-5:不等式选讲
不等式|2-x|+|x+1|≤a对于任意x∈[0,5]恒成立的实数a的集合为
{a|a≥9}
{a|a≥9}

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E,F,求证:EF∥BC.
B.选修4-2:矩阵与变换
已知a,b∈R,若矩阵M=[
-1
b
a
3
]所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.
C.选修4-4:坐标系与参数方程将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t为参数)化为普通方程.
D.选修4-5:已知a,b是正数,求证(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个A.选修4-1(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.选修4-2(矩阵与变换)
将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
C.选修4-4(坐标系与参数方程)
求直线
x=1+2t
y=1-2t
(t为参数)被圆
x=3cosa
y=3sina
(α为参数)截得的弦长.
D.选修4-5(不等式选讲)
已知x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

同步练习册答案