精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆x2+2y2=4的焦点,B(0,
2
)
,则
BF1
BF2
的值为
0
0
分析:由椭圆的方程得出其焦点坐标F1(-
2
,0),F2
2
,0),再利用向量的坐标表示出:
BF1
=(-
2
,-
2
)
BF2
=(
2
,-
2
)
,最后利用向量的数量积求解即可.
解答:解:椭圆x2+2y2=4的a=2,b=
2
,c=
2

F1(-
2
,0),F2
2
,0),
BF1
=(-
2
,-
2
)
BF2
=(
2
,-
2
)

BF1
BF2
=-2+2=0.
故答案为:0.
点评:本小题主要考查椭圆的方程、椭圆的简单性质、平面向量数量积的运算等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案