精英家教网 > 高中数学 > 题目详情
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边的中点.
(1)求AB边所在的直线方程;
(2)求中线AM的长.
(3)求BC的垂直平分线方程.
分析:(1)利用直线方程的两点式求直线的方程,并化为一般式.
(2)由中点公式求得M的坐标,再利用两点间的距离公式求出两点间的距离.
(3)先利用垂直关系求出垂直平分线的斜率,用点斜式写出垂直平分线的方程,并化为一般式.
解答:解:(1)由两点式得AB所在直线方程为:
y-5
-1-5
=
x+1
-2+1
,即6x-y+11=0.
(2)设M的坐标为(x0,y0),则由中点坐标公式得,x0=
-2+4
2
=1,y0=
-1+3
2
=1
,即点M的坐标为(1,1).
|AM|=
(1+1)2+(1-5)2
=2
5
.(5分)
(3)M的坐标为(1,1).设BC的垂直平分线斜率为k,
又BC的斜率是k1=
2
3
,则k=-
3
2

∴BC的垂直平分线方程为y-1=-
3
2
(x-1)

即3x+2y-5=0(8分)
点评:本题考查直线方程的两点式、点斜式、中点公式、两点间的距离公式的应用,以及两直线垂直的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(1)求AB边所在的直线方程;
(2)求中线AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(0,3)、B(-2,-1)、C(4,3),M是BC上的中点.
(1)求AB边所在的直线方程.
(2)求中线AM的长.
(3)求点C关于直线AB对称点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点是A(-1,-1),B(3,1),C(1,6).直线L平行于AB,且分别交AC,BC于E,F,三角形CEF的面积是三角形CAB面积的
14
.求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标分别为A(4,1),B(1,5),C-3,2);
(1)求直线AB方程的一般式;
(2)证明△ABC为直角三角形;
(3)求△ABC外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3).
(1)求AB边所在的直线方程;
(2)求AB边的高所在直线方程.

查看答案和解析>>

同步练习册答案