精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,则f(f(3))=3.

分析 由已知得f(3)=23=8,从而f(f(3))=f(8),由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,
∴f(3)=23=8,
f(f(3))=f(8)=log28=3.
故答案为:3.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.复数$\frac{1-{i}^{3}}{1-i}$(i是虚数单位)的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-a是奇函数
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)<m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=log2(1-x)-log2(1+x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并证明;
(3)求使f(x)>0的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|x≥1},B={x|x≥a},若A$\underline?B$,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a<0,b>0,则下列不等式恒成立的是(  )
A.a2<b2B.$\sqrt{-a}<\sqrt{b}$C.$\frac{1}{a}<\frac{1}{b}$D.$\frac{a}{b}$+$\frac{b}{a}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)是奇函数.若当x>0时,f(x)=x+lgx,则当x<0时,f(x)=x-lg(-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若对于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将函数$y=3sin(2x+\frac{π}{3})$的图象向右平移φ($0<φ<\frac{π}{2}$)个单位后,所得函数为偶函数,则φ=$\frac{5π}{12}$.

查看答案和解析>>

同步练习册答案