精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

(1)若曲线在点处的切线与直线平行,求满足的关系;

(2)当时,讨论的单调性;

(3)当时,对任意的,总有成立,求实数的取值范围.

【答案】(1);(2)①当时,上单调递增;②当时,上单调递增;在上单调递减;当时,函数上单调递增;在上单调递减;(3).

【解析】

1)求出,由函数在点处的切线与平行,得,从而可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)当时,对任意的恒成立等价于恒成立.,两次求导,可得,从而可得结果.

(1)由题意,得.

由函数在点处的切线与平行,得.

.

(2)当时,

.

①当时,恒成立,

函数上单调递增.

②当时,由,解得

,解得.

函数上单调递增;在上单调递减.

③当时,,解得

,解得.

函数上单调递增;在上单调递减.

(3)当时,

,得对任意的恒成立.

恒成立.

,则

,则

,解得.

,解得

,解得.

导函数在区间单增;在区间单减,

上单调递减,

.

故所求实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Pxy)是平面内的动点,定点F10),定直线lx=﹣1x轴交于点E,过点PPQl于点Q,且满足 .

1)求动点P的轨迹t的方程;

2)过点F作两条互相垂直的直线,分别交曲线t于点A,B,和点CD.设线段AB和线段CD的中点分别为MN,记线段MN的中点为K,点O为坐标原点,求直线OK的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)若,且为函数的一个极值点,求函数的单调递增区间;

2)若,且函数的图象恒在轴下方,其中是自然对数的底数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,椭圆的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点AB分别在椭圆上,若,则直线AB的斜率k为( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为等差数列的前n项和,是正项等比数列,且.在①,②,③这三个条件中任选一个,回答下列为题:

1)求数列的通项公式;

2)如果m),写出mn的关系式,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点在棱.

1)求证:平面平面

2)若直线平面,求此时三棱椎的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的单调增区间;

若函数上是增函数,求实数a的取值范围;

,且对任意,都有,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

同步练习册答案