精英家教网 > 高中数学 > 题目详情

【题目】已知集合,元素成为集合的特征元素,对于中的元素,定义:.时,若a是集合中的非特征元素,则的概率为___.

【答案】

【解析】

根据题意,先得到,分别确定中有“”所对应的基本事件个数,确定所包含的基本事件个数,基本事件个数比即为所求概率.

由题意,当时,

所以取值只能为

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

中有时,,此时共包含个基本事件;

因此的概率为

.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为正整数,各项均为正整数的数列满足:,记数列的前项和为

1)若,求的值;

2)若,求的值;

3)若为奇数,求证:的充要条件是为奇数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面α平面βlACα内不同的两点,BDβ内不同的两点,且ABCD直线lMN分别是线段ABCD的中点.下列判断正确的是(  )

A.ABCD,则MNl

B.MN重合,则ACl

C.ABCD相交,且ACl,则BD可以与l相交

D.ABCD是异面直线,则MN不可能与l平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若CABC的面积为6,求BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形,为等边三角形,线段的中点为,若,则此四棱锥的外接球的表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为D,若存在实常数,对任意,当时,都有成立,则称函数具有性质.

1)判断函数是否具有性质,并说明理由;

2)若函数具有性质,求应满足的条件;

3)已知函数不存在零点,当时具有性质(其中),记,求证:数列为等比数列的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面分别是的中点.

1)证明:平面平面

2)已知点在棱上且,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+lnx(a∈R).

(1)当a=时,求f(x)在区间[1e]上的最大值和最小值;

(2)如果函数g(x),f1x),f2(x),在公共定义域D上,满足f1x)<gx)<f2(x),那么就称g(x)为f1x),f2(x)的“活动函数”.已知函数. 若在区间(1,+∞)上,函数f(x)是f1x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今世界科技迅猛发展,信息日新月异.为增强全民科技意识,提高公众科学素养,某市图书馆开展了以“亲近科技、畅想未来”为主题的系列活动,并对不同年龄借阅者对科技类图书的情况进行了调查.该图书馆从只借阅了一本图书的借阅者中随机抽取100名,数据统计如表:

借阅科技类图书(人)

借阅非科技类图书(人)

年龄不超过50

20

25

年龄大于50

10

45

1)是否有99%的把握认为年龄与借阅科技类图书有关?

2)该图书馆为了鼓励市民借阅科技类图书,规定市民每借阅一本科技类图书奖励积分2分,每借阅一本非科技类图书奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的图书.用表中的样本频率作为概率的估计值.

i)现有3名借阅者每人借阅一本图书,记此3人增加的积分总和为随机变量ξ,求ξ的分布列和数学期望;

ii)现从只借阅一本图书的借阅者中选取16人,则借阅科技类图书最有可能的人数是多少?

附:K2,其中na+b+c+d

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案