精英家教网 > 高中数学 > 题目详情
16.已知幂函数y=f(x)的图象过点(2,4),则log2f($\frac{1}{2}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 设出幂函数的解析式,求出函数的解析式,计算log2f($\frac{1}{2}$)的值即可.

解答 解:设幂函数y=f(x)=xα
其图象过点(2,4),
∴2α=4,
解得α=2;
∴f(x)=x2
∴f($\frac{1}{2}$)=$\frac{1}{4}$,
∴log2f($\frac{1}{2}$)=log2$\frac{1}{4}$=-2,
故选:D.

点评 本题考查了求函数的解析式问题,考查幂函数的定义以及对数函数的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,不等式组$\left\{\begin{array}{l}{(x-y-1)(x+y-1)≥0}\\{-1≤x≤3}\end{array}\right.$表示的平面区域的面积为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某车间加工零件的数量x与加工时间y的统计数据如表:
零件数x(个)182022
加工时间y(分钟)273033
现已求得如表数据的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}{b}$值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为102分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,记a=-log23•f(log${\;}_{\frac{1}{3}}$2),b=f(1),c=4f(0.52),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等比数列{an}中,an>0,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2,求数列{an}的通项公式an=${({\frac{1}{2}})^{n-5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆(x-1)2+y2=4上一动点Q,则点P(-2,-3)到点Q的距离的最小值为$3\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x-y-1=0的倾斜角与其在y轴上的截距分别是(  )
A.135°,1B.45°,-1C.45°,1D.135°,-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱AA1,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面BEF,则线段A1P长度的取值范围是[$\frac{\sqrt{30}}{5}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)+B,(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图,则(  )
A.A=4B.ω=1C.φ=$\frac{π}{6}$D.B=4

查看答案和解析>>

同步练习册答案