分析 (1)由f1(x)=3x+1,f2(x)=ax2+bx+c为偶函数,运用偶函数的定义和恒等式的知识即可得到a,b,c;
(2)先令x=1,可得f2(1)=2,即a+b+c=2,再由不等式恒成立,结合二次函数的判别式小于等于0,及配方思想,可得a的范围,进而得到f2(-1)=4a-2,可得范围.
解答 解:(1)f1(x)=3x+1,f2(x)=ax2+bx+c为偶函数,
可得a+b=3,b=0,c=1,
解得a=3,b=0,c=1;
(2)可令x=1,即有2≤f2(1)≤2,
则f2(1)=2,即a+b+c=2,
由2x≤f2(x)恒成立,即为ax2+(b-2)x+c≥0,
可得a>0,且(b-2)2-4ac≤0,
即有(a+c)2-4ac≤0,即有(a-c)2≤0,
则a=c成立,
即有b=2-2a,又f2(x)-$\frac{1}{2}$(x+1)2=ax2+(2-2a)x+a-$\frac{1}{2}$(x+1)2=(a-$\frac{1}{2}$)(x-1)2,
对任意的x∈R,都有f2(x)≤$\frac{1}{2}$(x+1)2,即有0<a≤$\frac{1}{2}$,
故f2(-1)=a-b+c=4a-2的取值范围是(-2,0].
点评 本题考查函数的性质和应用,考查不等式恒成立问题的解法,注意运用判别式和配方思想,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 6cm2 | B. | $\frac{{3\sqrt{5}}}{4}$cm2 | C. | $\frac{2}{3}$$\sqrt{3}$cm2 | D. | 3$\sqrt{5}$cm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$] | B. | ($\frac{1}{4}$,$\frac{3}{4}$] | C. | [$\frac{1}{2}$,$\frac{3}{4}$) | D. | [$\frac{1}{4}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com