A. | 一条直线与两个平行平面中的一个相交,则必与另一个平面相交 | |
B. | 平行于同一平面的两条直线不一定平行 | |
C. | 如果平面α,β垂直,则过α内一点有无数条直线与β垂直 | |
D. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β |
分析 利用线面平行的定义、性质定理、面面垂直的性质定理对选项分别分析选择.
解答 解:选项A:一条直线与两个平行平面中的一个相交,则必与另一个面相交,正确;
反证法:假设a∥α或a?α内,
则由α∥β可知,
a∥β或a?β,
与a∩β=A相矛盾,故假设不成立;
选项B:平行于同一平面的两条直线不一定平行,正确;例如正方体中的A1B1与B1C1都与平面ABCD平行,但它们相交;
选项C:平面α,β垂直,则过α内一点有一条直线与β垂直,故C错误;
选项D:如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面,正确;是线面垂直判定定理的逆否命题;
故选:C.
点评 本题考查了线面的位置关系的判断及应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com