精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x•ex-1,g(x)=lnx+kx,且f(x)≥g(x)对任意的x∈(0,+∞)恒成立,则实数k的最大值为1.

分析 运用够造函数的方法求解k≤ex$-\frac{1}{x}$$-\frac{lnx}{x}$,h(x)=ex$-\frac{1}{x}$$-\frac{lnx}{x}$,k≤h(x)即可.运用求解导数得出h(x)在(0,x0)单调递减,(x0,+∞)单调递增.估算出$\frac{1}{2}<{x}_{0}$$<\frac{3}{4}$,1<h(x0)<2,得出k≤1.

解答 解:∵f(x)=x•ex-1,g(x)=lnx+kx,且f(x)≥g(x),
∴x•ex-1≥lnx+kx,
k≤ex$-\frac{1}{x}$$-\frac{lnx}{x}$,h(x)=ex$-\frac{1}{x}$$-\frac{lnx}{x}$,k≤h(x)即可.
h′(x)=$\frac{{x}^{2}{e}^{x}+lnx}{{x}^{2}}$,h′(1)>0,h(x)在(1,+∞)单调递增,
令h′(x)=0,x=x0,x02e${\;}^{{x}_{0}}$+lnx0=0,则h(x)在(0,x0)单调递减,(x0,+∞)单调递增.
h(x)=e${\;}^{{x}_{0}}$$-\frac{1}{{x}_{0}}$$-\frac{ln{x}_{0}}{{x}_{0}}$,h($\frac{1}{2}$)=$\sqrt{e}$-ln16<0,h($\frac{3}{4}$)=${e}^{\frac{3}{4}}$$+\frac{16}{9}$ln$\frac{3}{4}$>0∴$\frac{1}{2}<{x}_{0}$$<\frac{3}{4}$,
h($\frac{1}{2}$)=$\sqrt{e}$+2ln2-2=1.035,
h($\frac{3}{4}$)=e${\;}^{\frac{3}{4}}$$-\frac{4}{3}$(ln$\frac{3}{4}$+1)=1.168
1<h(x0)<2,k≤1
故答案为:1

点评 本题综合考察了导数的运用,难度较大,需要有很强的估算能力,观察能力,敢于往下钻研的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“$\frac{1}{2}$一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\frac{2x}{{2}^{x}+1}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC是边长为$2\sqrt{3}$的正三角形,EF为△ABC的外接圆o的一条直径,M为△ABC的边上的动点,则$\overrightarrow{ME}•\overrightarrow{MF}$的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x,y满足条件$\left\{\begin{array}{l}x+2y≥1\\ x+4y≤3\\ y≥0\end{array}\right.$则z=x+y的最大值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将号码分别为1、2、…、6的六个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,号码为a,放回后,乙从此袋再摸出一个球,其号码为b,则使不等式a-2b+2>0成立的事件发生的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}前n项和为Sn,且S3=8,S6=9,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2若平面向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow{b}$)|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则|$\overrightarrow{c}$|的最大值为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点A(x0,y0)是抛物线y2=2px(p>0)上一点,且它在第一象限内,焦点为F,O坐标原点,若|AF|=$\frac{3p}{2}$,|AO|=2$\sqrt{3}$,则此抛物线的准线方程为(  )
A.x=-4B.x=-3C.x=-2D.x=-1

查看答案和解析>>

同步练习册答案