精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn

【答案】
(1)证明:∵a1+a2+…+an+2n= (an+1+1),

∴当n≥2时,a1+a2+…+an1+2n1= (an+1),

∴an+2n1=

化为an+1=3an+2n

变形为:an+1+2n+1=3

∴数列{an+2n}是等比数列,首项为3,公比为3


(2)解:由(1)可得:an+2n=3n

∴an=3n﹣2n

∴数列{an}的前n项和Sn= = ﹣2n+1+


【解析】(1)利用递推关系、等比数列的通项公式即可得出;(2)利用等比数列的前n项和公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1= ,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1

(1)证明:BC⊥AB1
(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续抛掷两次骰子,得到的点数分别为m,n,记向量 =(m,n), =(1,﹣1)的夹角为θ,则θ∈(0, )的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2(a为实常数).
(1)当a=﹣4时,求函数f(x)在[1,e]上的最大值及相应的x值;
(2)当x∈[1,e]时,讨论方程f(x)=0根的个数.
(3)若a>0,且对任意的x1 , x2∈[1,e],都有 ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=x2﹣2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上,离心率为 的椭圆过点( ).
(1)求椭圆的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥V﹣ABCD中,底面ABCD是边长2为的正方形,其他四个侧面都是侧棱长为 的等腰三角形.
(1)求正四棱锥V﹣ABCD的体积.
(2)求二面角V﹣BC﹣A的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, =2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

同步练习册答案