精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若时,求的交点坐标;

(2)若上的点到距离的最大值为,求.

【答案】(1);(2).

【解析】试题分析:(1)根据参数方程、极坐标方程与直角坐标方程的互化,求得曲线的直角坐标方程,联立方程组,即可求解交点的坐标;

(2)由曲线的参数方程,设上的点,求得点到的距离,根据三角函数的图象与性质,得出的最大值,从而的值.

试题解析:

(1)曲线的普通方程为

时,直线的普通方程为

,解得,或

从而的交点坐标为.

(2)直线的普通方程为

的参数方程为为参数),

上的点的距离为

.

时,的最大值为

由题设得,所以

时,的最大值为

由题设得,所以

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是边长等于2的等边三角形,四边形是菱形,是棱上的点,.分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面PAC⊥平面ABC,点EFO分别为线段PAPBAC的中点,点G是线段CO的中点,ABBCAC4PAPC2.求证:

1PA⊥平面EBO

2FG∥平面EBO

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,均与底面垂直,且为直角梯形,分别为线段的中点,为线段上任意一点.

(1)证明:平面.

(2)若,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5), 第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示。已知第三组的频数是第五组频数的3倍。

(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;

(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”。经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(2)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抛物线上的两点,的中点的纵坐标为4,直线的斜率为.

(1)求抛物线的方程;

(2)已知点为抛物线(除原点外)上的不同两点,直线的斜率分别为,且满足,记抛物线处的切线交于点,若点的中点的纵坐标为8,求点的坐标.

查看答案和解析>>

同步练习册答案