【题目】已知函数,当x = -1时取得极大值7,当x = 3时取得极小值;
(1)求a,b的值;
(2)求f(x)的极小值。
【答案】(1);(2).
【解析】
利用函数f(x)在x=x0取得极值的充要条件f′(x0)=0且f′(x)在x=x0的左右附近符号相反即可得出a,b的值,再利用极大值即可得到c,从而得出答案.
(1)∵f(x) = x3+ ax2+bx + c ,∴f′ (x) = 3x2+2ax +b
∵当x =- 1 时函数取得极大值7,当x = 3时取得极小值
∴x =- 1 和x = 3是方程f′ (x)=0的两根,有
∴, ∴f(x) = x3-3x2-9x+c.
(2)∵当x = -1时,函数取极大值7,∴(-1)3–3(-1)2–9(-1)+c= 7,∴c=2.
此时函数f(x)的极小值为:f(3)= 33-3×32-9×3×2=-25.
科目:高中数学 来源: 题型:
【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:,,,,,后,得到如图的频率分布直方图.
(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=log2( +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且 .
(1)求A的值;
(2)若点D在边BC上,且3 = , = ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足 <0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作曲线(其中为自然对数的底数)的切线,切点为,设在轴上的投影是点,过点再作曲线的切线,切点为,设在轴上的投影是点,依次下去,得到第个切点,则点的坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com