精英家教网 > 高中数学 > 题目详情

【题目】已知函数,当x = -1时取得极大值7,当x = 3时取得极小值;

(1)求a,b的值;

(2)求f(x)的极小值。

【答案】(1);(2).

【解析】

利用函数f(x)在x=x0取得极值的充要条件f(x0)=0f(x)在x=x0的左右附近符号相反即可得出a,b的值,再利用极大值即可得到c,从而得出答案.

(1)∵f(x) = x3+ ax2+bx + c ,∴f′ (x) = 3x2+2ax +b

x =- 1 时函数取得极大值7,当x = 3时取得极小值

∴x =- 1 x = 3是方程f′ (x)=0的两根,有

, ∴f(x) = x3-3x2-9x+c.

(2)∵x = -1时,函数取极大值7,∴(-1)3–3(-1)2–9(-1)+c= 7,∴c=2.

此时函数f(x)的极小值为:f(3)= 33-3×32-9×3×2=-25.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:后,得到如图的频率分布直方图.

(I)调查公司在抽样时用到的是哪种抽样方法?

(II)求这40辆小型汽车车速的众数和中位数的估计值;

(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(1,2)∪(2,3)
B.(﹣∞,1)∪(3,+∞)
C.(1,3)
D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且
(1)求A的值;
(2)若点D在边BC上,且3 = = ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为F1,F2,P是椭圆上一点,|PF1|=λ|PF2| ,,则椭圆离心率的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足 <0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作曲线其中为自然对数的底数的切线切点为轴上的投影是点过点再作曲线的切线切点为轴上的投影是点依次下去得到第个切点则点的坐标为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案