精英家教网 > 高中数学 > 题目详情
15.已知曲线y=-$\frac{1}{3}$x3+2与曲线y=4x2-1在x=x0处的切线互相垂直,则x0的值为$\frac{1}{2}$.

分析 分别求得两函数的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为-1,解方程可得所求值.

解答 解:y=-$\frac{1}{3}$x3+2的导数为y′=-x2
y=4x2-1的导数为y′=8x,
在x=x0处的切线的斜率分别为-x02,8x0
由在x=x0处的切线互相垂直,可得-x02•8x0=-1,
解得x0=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查导数的运用:求切线的斜率,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义域为R的偶函数f(x)在(0,+∞)上为增函数,则(  )
A.f(4)>f(3)B.f(-5)>f(5)C.f(-3)>f(-5)D.f(3)>f(-6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={x|0≤x≤4},B={y|0≤y≤2},从A到B的对应法则分别是:
(1)$f:x→y=\frac{1}{2}x$; (2)f:x→y=x-2;
(3)$f:x→y=\sqrt{x}$; (4)f:x→y=|x-2|.
其中能够成一 一映射的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|3x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-$\frac{2}{3}$≤x≤$\frac{4}{3}$},求实数a的值.
(Ⅱ)在(Ⅰ)的条件下,令g(x)=f(x)+f(x+5),若不等式g(x)≥|m-1|对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R).
(1)求函数f(x)的单调区间和极值;
(2)已知函数y=g(x)对任意x满足g(x)=f(4-x),证明当x>2时,f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=a2=1,且an+2=$\frac{1}{{a}_{n+1}}$+an(n=1,2,3…)求a2004

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为(  )
A.{y|-1≤y≤3}B.{y|0≤y≤3}C.{0,1,2,3}D.{-1,0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{\sqrt{3}}{2}sin2x-{cos}^{2}x+\frac{1}{2}$.
(1)当$x∈[0,\frac{π}{2}]$时,求函数f(x)的取值范围;
(2)将f(x)的图象向左平移$\frac{π}{6}$ 个单位得到函数g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,D,E分别是BC,AC的中点.M为AD与BE的交点,求证:点M分别将线段AD,BE分成2:1的两部分.(要求用向量方法.)

查看答案和解析>>

同步练习册答案