精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= 恰有2个零点,则实数a的取值范围是

【答案】[ ,1)∪[3,+∞)
【解析】解:①当a≤0时,f(x)>0恒成立,

故函数f(x)没有零点;②当a>0时,3x﹣a=0,

解得,x=log3a,又∵x<1;

∴当a∈(0,3)时,log3a<1,

故3x﹣a=0有解x=log3a;

当a∈[3,+∞)时,log3a≥1,

故3x﹣a=0在(﹣∞,1)上无解;

∵x2﹣3ax+2a2=(x﹣a)(x﹣2a),

∴当a∈(0, )时,

方程x2﹣3ax+2a2=0在[1,+∞)上无解;

当a∈[ ,1)时,

方程x2﹣3ax+2a2=0在[1,+∞)上有且仅有一个解;

当a∈[1,+∞)时,

方程x2﹣3ax+2a2=0在[1,+∞)上有且仅有两个解;

综上所述,

当a∈[ ,1)或a∈[3,+∞)时,

函数f(x)= 恰有2个零点,

所以答案是:[ ,1)∪[3,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:

休假次数

0

1

2

3

人数

5

10

20

15


(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个正三棱锥的零件,P是侧面ACD上的一点.过点P作一个与棱AB垂直的截面,怎样画法?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,满足2asinA=(2b﹣ c)sinB+(2c﹣ b)sinC. (Ⅰ)求角A的大小;
(Ⅱ)若a=2,b=2 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1 , ∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0,
(1)求l2的方程,使得:①l2与l1平行,且过点(﹣1,3); ②l2与l1垂直,且l2与两坐标轴围成的三角形面积为4;
(2)直线l1与两坐标轴分别交于A、B 两点,求三角形OAB(O为坐标原点)内切圆及外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,则(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

查看答案和解析>>

同步练习册答案