精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,D为BC边上的中点,P0是边AB上的一个定点,P0B= AB,且对于AB上任一点P,恒有 ,则下列结论中正确的是(填上所有正确命题的序号).
①当P与A,B不重合时, + 共线;
=
③存在点P,使| |<| |;
=0;
⑤AC=BC.

【答案】①②⑤
【解析】解:∵D为BC边的中点,∴ + =2 ,故①正确;
=( + )( + )= 2 2 , 故②正确;
由题意可得 = ,由已知 恒成立,
,即| |≥| |恒成立,故③错误;
注意到P0 , D是定点,∴P0D是点D与直线上各点距离的最小值,则P0D⊥AB,故 =0,
设AB中点为O,则CO∥P0D,故④错误;
再由D为BC的中点,CO为底边AB的中线,且CO⊥AB,∴△ABC是等腰三角形,有AC=BC,故⑤正确.
综上可知,①②⑤正确,
所以答案是:①②⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 “存在”,命题“曲线表示焦点在轴上的椭圆”,命题 曲线表示双曲线”

1若“”是真命题,求实数的取值范围;

2的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量取整数)存在如下关系 且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,yt的关系拟合的曲线为,现已取出了10对样本数据(tiyi)(i=12310),且知 试用可线性化的回归方法,求拟合曲线的表达式.(附:线性回归方程中, .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,若的图象上相邻两条对称轴的距离为,图象过点.

(1)求表达式和的单调增区间;

(2)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若函数在区间上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,点边上,

(1)求的值;

(2)若的面积是,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数,其中a为常数.

I)若x=1是函数的一个极值点,求a的值

II)若函数在区间(-10)上是增函数,求a的取值范围

III)若函数,在x=0处取得最大值,求正数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数为( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界,已知函数

Ⅰ)若是奇函数,求的值.

Ⅱ)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由.

Ⅲ)若函数上是以为上界的函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案