精英家教网 > 高中数学 > 题目详情

(2007上海,20)如果有穷数列,…,(n为正整数)满足条件,我们称其为“对称数列”.例如,由组合数组成的数列就是“对称数列”.

(1)是项数为7的“对称数列”,其中是等差数列,且.依次写出的每一项;

(2)是项数为2k1(正整数k1)的“对称数列”,且,…,是首项为50,公差为-4的等差数列.记各项的和为.当k为何值时,取得最大值?并求出的最大值;

(3)对于确定的正整数m1,写出所有项数不超过2m的“对称数列”,使得依次是该数列中连续的项;当m1500时,求其中一个“对称数列”前2008项的和

答案:略
解析:

解析:(1)的公差为d

,解得d=3

∴数列25811852

(2)

∴当k=13时,取得最大值.

的最大值为626

(3)所有可能的“对称数列”是:

.对于①,当m2008时,

1500m2007时,

对于②,当m2008时,

1500m2007时,

对于③,当m2008时,

1500m2007时,

对于④,当m2008时,

1500m2007时,


练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

(2007上海春,20)通常用abc分别表示△ABC的三个内角ABC所对边的边长,R表示△ABC的外接圆半径.

(1)如图所示,在以O为圆心、半径为2的⊙O中,BCBA是圆的弦,其中BC=2,∠ABC=45°,求弦AB的长;

(2)在△ABC中,若∠C是钝角,求证:

(3)给定三个正实数abR,其中ba.问:abR满足怎样的关系时,以ab为边长,R为外接圆半径的△ABC不存在、存在一个或存在两个(全等的三角形算作同一个)?在△ABC存在的情况下,用abR表示c

查看答案和解析>>

同步练习册答案