精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:
①FG⊥BD
②B1D⊥面EFG
③面EFG面ACC1A1
④EF面CDD1C1
正确结论的序号是(  )
A.①和②B.②和④C.①和③D.③和④
精英家教网

精英家教网
如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点
①因为FGBC1,△BDC1是正三角形,所以∠C1BD=60°,因为FGBC1,所以异面直线FG与BD所成的角为60°,
FG⊥BD不正确,所以①不正确.
②因为平面A1C1B平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,所以②正确.
③因为EF和FG和平面面ACC1A1不平行,所以③错误.
④EF平面CDD1C1内的D1C,所以EF面CDD1C1.所以④正确.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案