精英家教网 > 高中数学 > 题目详情
a2(n≥4,n∈N*)个正数排成一个n行n列的数阵:
精英家教网
其中aik(1≤i≤n,1≤k≤n,k∈N*)表示该数阵中位于第i行第k列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,a23=8,a34=20.
(1)求a11和aik
(2)设An=a1n+a2(n-1)+a3(n-2)+…+an1,是否存在整数p使得不等式An≥11n+p对任意的n∈N*恒成立,如果存在,求出p的最大值;如果不存在,请说明理由.
分析:(1)设第一行的公差为d,则a1k=a11+(k-1)d,aik=[a11+(k-1)d]•2i-1,由a23=8,a34=20可知a11和d的值,从而得到aik的值.
(2)由题意得An=2+22+23++2n-1+2×2n-(n+1)=
2-2n-1×2
1-2
+2×2n-(n+1)=3(2n-1)-n
,An≥11n+p?p≤An-11n
令Bn=An-11n,则Bn=(3•2n-n-3)-11n=3•2n-12n-3,从而Bn+1-Bn=3(2n-4).由此入手能够推导出p的最大值为-15.
解答:解:(1)设第一行的公差为d,则a1k=a11+(k-1)d∵第b列的数成公比为2的等比数列
即aik=[a11+(k-1)d]•2i-1(2分)
又∵a23=8,a34=20∴
2(a11+2d)=8
22(a11+3d)=20.

解得a11=2,d=1(4分)
从而aik=(k+1)•2i-1(6分)
(2)由(1),得ai(n+1-i)=(n+2-i)•2i-1
An=ann+a2(n-1)+a3(n-2)+…+an1
=(n+1)×20+n×2+(n-1)×22+…+2×2n-12n=(n+1)×2+n×22+(n-1)×23+…+3×2n-1+2×2n
两式相减,得An=2+22+23+…+2n-1+2×2n-(n+1)=
2-2n-1×2
1-2
+2×2n-(n+1)=3(2n-1)-n
(9分)
An≥11n+p?p≤An-11n
令Bn=An-11n,
则Bn=(3•2n-n-3)-11n=3•2n-12n-3
从而Bn+1-Bn=[3•2n+1-12(n+1)-3]-(3•2n-12n-3)=3(2n-4).
由上式知:当n=1时,有B2<B1
当n=2时,有B2=B3
当n>2时,Bn+1>Bn
因此,数列{Bn}的最小项为B2或B3
又B2=B3=-15
所以,p≤-15,即p的最大值为-15.(13分)
点评:本题考查数列的性质和应用,解题时要注意错位相减法和分类讨论法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=4,且对任意的n≥3,n∈N*有an-4an-1+4an-2=0.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)是否存在等差数列{bn},使得对任意的n∈N*有an=b1Cn1+b2Cn2+…+bnCnn成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A1,A2,…,Am为集合A={1,2,…,n}(n≥2且n∈N*)的子集,且满足两个条件:
①A1∪A2∪…∪Am=A;
②对任意的{x,y}⊆A,至少存在一个i∈{1,2,3,…,m},使Ai∩{x,y}={x}或{y}.则称集合组A1,A2,…,Am具有性质P.
如图,作n行m列数表,定义数表中的第k行第l列的数为akl=
1(k∈Al)
0(k∉Al)

a11 a12 a1m
a21 a22 a2m
an1 an2 anm
(Ⅰ)当n=4时,判断下列两个集合组是否具有性质P,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:A1={1,3},A2={2,3},A3={4};
集合组2:A1={2,3,4},A2={2,3},A3={1,4}.
(Ⅱ)当n=7时,若集合组A1,A2,A3具有性质P,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合A1,A2,A3
(Ⅲ)当n=100时,集合组A1,A2,…,At是具有性质P且所含集合个数最小的集合组,求t的值及|A1|+|A2|+…|At|的最小值.(其中|Ai|表示集合Ai所含元素的个数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

a2(n≥4,n∈N*)个正数排成一个n行n列的数阵:

其中aik(1≤i≤n,1≤k≤n,k∈N*)表示该数阵中位于第i行第k列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,a23=8,a34=20.
(1)求a11和aik
(2)设An=a1n+a2(n-1)+a3(n-2)+…+an1,是否存在整数p使得不等式An≥11n+p对任意的n∈N*恒成立,如果存在,求出p的最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年湖南省长沙市长郡中学高三5月模拟数学试卷(文科)(解析版) 题型:解答题

a2(n≥4,n∈N*)个正数排成一个n行n列的数阵:

其中aik(1≤i≤n,1≤k≤n,k∈N*)表示该数阵中位于第i行第k列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,a23=8,a34=20.
(1)求a11和aik
(2)设An=a1n+a2(n-1)+a3(n-2)+…+an1,是否存在整数p使得不等式An≥11n+p对任意的n∈N*恒成立,如果存在,求出p的最大值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案