【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,(a∈R). (Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0, )上无零点,求a的取值范围.
【答案】解:(Ⅰ)当a=1时,f(x)=x﹣1﹣2lnx,则f′(x)=1﹣ , 由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,
故f(x)的单调减区间为(0,2],单调增区间为[2,+∞);
(Ⅱ)因为f(x)<0在区间(0, )上恒成立不可能,
故要使函数f(x)在(0, )上无零点,
只要对任意的x∈(0, ),f(x)>0恒成立,
即对x∈(0, ),a>2﹣ 恒成立.
令h(x)=2﹣ ,x∈(0, ),
则h′(x)= ,
再令m(x)=2lnx+ ﹣2,x∈(0, ),
则m′(x)= <0,
故m(x)在(0, )上为减函数,
于是,m(x)>m( )=4﹣3ln3>0,
从而h(x)>0,于是h(x)在(0, )上为增函数,
所以h(x)<h( )=2﹣3ln3,
∴a的取值范围为[2﹣3ln3,+∞)
【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为x∈(0, ),a>2﹣ 恒成立,令h(x)=2﹣ ,x∈(0, ),根据函数的单调性求出h(x)的最大值,从而求出a的范围即可.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆 (a>b>0)的离心率为 ,焦点到相应准线的距离为1.
(1)求椭圆的标准方程;
(2)若P为椭圆上的一点,过点O作OP的垂线交直线 于点Q,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱(侧棱垂直于底面)中,,,,.
(1)证明:平面;
(2)若是的中点,在线段上是否存在一点使平面?若存在,请确定点的位置;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.
(1)若4发子弹全打光,求他击中目标次数的数学期望;
(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为2,则输出v的值为( )
A.210﹣1
B.210
C.310﹣1
D.310
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com