分析 (1)若2f(x)≥g(x+4)恒成立,可得m≤2(|x+3|+|x-7|),而由绝对值三角不等式可得 2(|x+3|+|x-7|)≥20,可得m≤20,由此求得m的最大值t.
(2)由柯西不等式可得(2x2+3y2+6z2)•($\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$)≥(x+y+z)2,即a×1≥(x+y+z)2,即x+y+z≤$\sqrt{a}$,再根据 x+y+z的最大值是$\frac{t}{20}$=1,可得$\sqrt{a}$=1,从而求得a的值.
解答 解:(1)由题意可得g(x+4)=m-2|x+4-11|=m-2|x-7|,若2f(x)≥g(x+4)恒成立,
∴2|x+3|≥m-2|x-7|,即 m≤2(|x+3|+|x-7|).
而由绝对值三角不等式可得 2(|x+3|+|x-7|)≥2|(x+3)-(x-7)|=20,
∴m≤20,故m的最大值t=20.
(2)∵实数x、y、z满足2x2+3y2+6z2=a(a>0),由柯西不等式可得
(2x2+3y2+6z2)•($\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$)≥(x+y+z)2,
∴a×1≥(x+y+z)2,∴x+y+z≤$\sqrt{a}$.
再根据 x+y+z的最大值是$\frac{t}{20}$=1,∴$\sqrt{a}$=1,∴a=1.
点评 本题主要考查绝对值三角不等式、柯西不等式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{9}$ | B. | $\frac{2}{3}$ | C. | $-\frac{2}{3}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com