【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)见解析;(2)(i)男生有6人,女生有4人. (ii)见解析
【解析】
(1)根据题意填写列联表,计算观测值,对照临界值得出结论;
(2)(i)由男女生所占的比例直接求解;(ii)分别求得不同取值下的概率,列出分布列,根据期望公式计算结果即可.
(1)
锻炼不达标 | 锻炼达标 | 合计 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合计 | 150 | 50 | 200 |
由列联表中数据,计算得到的观测值为 .
所以在犯错误的概率不超过0.025的前提下能判断“锻炼达标”与性别有关.
(2)(i)“锻炼达标”的学生有50人,男、女生人数比为,故用分层抽样方法从中抽出10人,男生有6人,女生有4人.
(ii)的可能取值为0,1,2;
,
,
,
∴的分布列为
0 | 1 | 2 | |
∴的数学期望.
科目:高中数学 来源: 题型:
【题目】实验中学从高二级部中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1个相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级6名选手,现从每个班级6名选手中随机抽取3人回答这个问题已知这6人中,甲班级有4人可以正确回答这道题目,而乙班级6人中能正确回答这道题目的概率每人均为,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的.
(1)求甲、乙两个班级抽取的6人都能正确回答的概率;
(2)分别求甲、乙两个班级能正确回答题目人数的期望和方差、,并由此分析由哪个班级代表学校参加大赛更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,动点与两定点,连线的斜率之积为,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过原点且斜率为的直线与曲线交于两点(点在第一象限),求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据(),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( )
A.与具有正线性相关关系
B.回归直线过样本的中心点
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程;
(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:
(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;
(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.
(参考数据:, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面.
(1)若为边的中点,求证:平面.
(2)求证:.
(3)若为边的中点,能否在上找出一点,使平面 平面?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
当时,判断直线与曲线的位置关系;
若直线与曲线相切于点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com