精英家教网 > 高中数学 > 题目详情

【题目】如图,某大型厂区有三个值班室,值班室在值班室的正北方向千米处,值班室在值班室的正东方向千米处.

1)保安甲沿从值班室出发行至点处,此时,求的距离;

2)保安甲沿从值班室出发前往值班室,保安乙沿从值班室出发前往值班室,甲乙同时出发,甲的速度为千米/小时,乙的速度为千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为千米(含千米),试问有多长时间两人不能通话?

【答案】1;(2小时.

【解析】

1)在中求得后,在中利用余弦定理可求得结果;

2)设甲乙出发后的时间为小时,在中,利用余弦定理可用表示出,解可求得结果.

1)在中,,则

中,由余弦定理得:

2)设甲乙出发后的时间为小时,甲在线段上的位置为,乙在线段上的位置为,则,且

由(1)知:

中,由余弦定理得:

若甲乙不能通话,则,即,解得:

两人不能通话的时间为小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】手机运动计步已成为一种时尚,某中学统计了该校教职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

(Ⅰ)求直方图中的值,并由频率分布直方图估计该校教职工一天步行数的中位数;

(Ⅱ)若该校有教职工175人,试估计一天行走步数不大于130百步的人数;

(Ⅲ)在(Ⅱ)的条件下该校从行走步数大于150百步的3组教职工中用分层抽样的方法选取6人参加远足活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线的参数方程为t为参数,.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

1)求的普通方程;

2)若直线l的极坐标方程为,其中满足,若曲线的公共点均在l上,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了政府对过热的房地产市场进行调控决策,统计部门对城市人和农村人进行了买房的心理预期调研,用简单随机抽样的方法抽取110人进行统计,得到如下列联表:

买房

不买房

纠结

城市人

5

15

农村人

20

10

已知样本中城市人数与农村人数之比是3:8.

分别求样本中城市人中的不买房人数和农村人中的纠结人数;

用独立性检验的思想方法说明在这三种买房的心理预期中哪一种与城乡有关?

参考公式:

k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点距离之比为常数的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,的中点,则三棱锥的体积的最小值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:当x(0,π]时,f(x)<1

2)求证:当m2时,对任意x0(0,π] ,存在x1(0,π]x2(0,π](x1x2)使g(x1)=g(x2)=f(x0)成立.

查看答案和解析>>

同步练习册答案