精英家教网 > 高中数学 > 题目详情
在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

试题分析:依题意作出四面体A—BCD.连接DO并延长交BC于点E,连AO、AE,则易知AO⊥DE,BC⊥AO.由DA⊥面ABC ,得DA⊥BC,从而BC⊥面AED,所以DE⊥BC,AE⊥BC.又易知△AED为直角三角形,其中,AO为斜边ED上的高,所以由射影定理,.又所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)证明:CB1⊥BA1
(2)已知AB=2,BC=,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求点到面的距离;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为平行四边形,平面中点.

(1)求证:平面
(2)若,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某地球仪上北纬纬线长度为cm,该地球仪的表面上北纬东经对应点与北纬东经对应点之间的球面距离为        cm(精确到0.01).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,两两垂直,且,设是底面内一点,定义,其中分别是三棱锥,三棱锥,三棱锥的体积,若,且,则正实数的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是单位正方体表面上的一个动点,且。则的轨迹的总长度为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在半径为3的球面上有三点,=90°,,球心O到平面的距离是,则两点的球面距离是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

的三个顶点所对三边长分别为,已知的内心,过作直线与直线分别交于三点,且,则.将这个结论类比到空间:设四面体ABCD的四个面BCD,ABC,ACD,ABD的面积分别为,内切球球心为,过作直线与平面BCD,ABC,ACD,ABD分别交于点,且,则             .

查看答案和解析>>

同步练习册答案