精英家教网 > 高中数学 > 题目详情
θ=
π
3
”是“cosθ=
1
2
”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
由题意“θ=
π
3
”成立时,一定有“cosθ=
1
2
”成立,故“θ=
π
3
”是“cosθ=
1
2
”充分条件;
又“cosθ=
1
2
”时,可得θ=2kπ±
π
3
,k∈z,故“θ=
π
3
”不是“cosθ=
1
2
”的必要条件.
综上“θ=
π
3
”是“cosθ=
1
2
”的充分不必要条件
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE:AP=1:3.
(1)求证:OE∥平面PBC;
(2)求二面角D-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-1:几何证明选讲】
已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.
(1)求证:FA∥BE;
(2)求证:
AP
PC
=
FA
AB

(3)若⊙O的直径AB=2,求tan∠PFA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,一块矿石晶体的形状为四棱柱,底面ABCD是正方形,CC1=3,CD=2,且∠C1CB=∠C1CD=60°.
(1)设
CD
=
a
 
CB
=
b
 
CC1
=
c
,试用
a
b
c
表示
A1C

(2)O为四棱柱的中心,求CO的长;
(3)求证:A1C⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OAB是边长为4的正三角形,CO⊥平面OAB,且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB∥平面CDE;
(2)求点B到平面CDE的距离;
(3)求二面角O-CD-E的大小.

查看答案和解析>>

同步练习册答案