精英家教网 > 高中数学 > 题目详情

【题目】已知函数为定义在上的偶函数,且当时,.

1)求当时,的解析式;

2)在网格中绘制的图像;

3)若方程有四个根,求的取值范围.

【答案】1; (2)见解析; (3).

【解析】

(1)设,则,由函数为定义在上的偶函数,求得,即可得到答案;

(2)由(1)可得函数的解析式为,根据二次函数的图象与性质,即可得到函数的图象.

3)要使得方程有四个根,即函数的图象有4个不同的交点,结合图象,即可求解.

(1)由题意,设,则

因为函数为定义在上的偶函数,

所以,

即当时,.

(2)由(1)可得函数的解析式为

函数的图象如图所示:

3)由(2)可得,当时,

时,可得

要使得方程有四个根,即函数的图象有4个不同的交点,

如图所示,则满足

的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设直线交两坐标轴于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①若函数在区间上单调递增,则

②若),则的取值范围是

③若函数,则对任意的,都有

④若),在区间上单调递减,则.

其中所有正确命题的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下列结论正确的是 ( )

A. 向左平移个单位长度,得到的曲线关于原点对称

B. 向右平移个单位长度,得到的曲线关于轴对称

C. 向左平移个单位长度,得到的曲线关于原点对称

D. 向右平移个单位长度,得到的曲线关于轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E、F、G分别是PA、PB、BC的中点

(1)证明:平面EFG∥平面PCD;

(2)若平面EFG截四棱锥P-ABCD所得截面的面积为,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量.(注:总收益=总成本+利润)

(1)将利润表示为月产量的函数;

(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农业合作社生产了一种绿色蔬菜共吨,如果在市场上直接销售,每吨可获利万元;如果进行精加工后销售,每吨可获利万元,但需另外支付一定的加工费,总的加工(万元)与精加工的蔬菜量(吨)有如下关系:设该农业合作社将(吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为(万元).

(1)写出关于的函数表达式;

(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数为偶函数,求实数的值;

2)若,求函数的单调递减区间;

3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:4x-3y+6=0和直线l2x=-.若拋物线Cy2=2px(p>0)上的点到直线l1和直线l2的距离之和的最小值为2.

(1)求抛物线C的方程;

(2)若以拋物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案