精英家教网 > 高中数学 > 题目详情
10.设函数$f(x)={log_2}(\frac{1+ax}{1-x})$,若$f(\frac{1}{3})=1$
(1)求f(x)的解析式并判断其奇偶性;
(2)当x∈[-1,0)时,求f(3x)的值域;
(3)已知函数$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,求k的范围.

分析 (1)利用函数与方程的关系,求出a,然后得到函数的解析式,即可判断函数的奇偶性.
(2)通过函数的解析式以及定义域,求解函数的值域即可.
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,求出f(x)的最大值,利用 f(x)max>g(x)max,求出k的范围即可.

解答 解:(1)函数$f(x)={log_2}(\frac{1+ax}{1-x})$,$f(\frac{1}{3})=1$,可得$1=lo{g}_{2}(\frac{1+\frac{1}{3}a}{1-\frac{1}{3}})$,解得$\frac{1+\frac{1}{3}a}{1-\frac{1}{3}}=2$,3+a=4,
∴a=1,
f(x)的解析式为:$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$,定义域为(-1,1)
$f(-x)=lo{g}_{2}(\frac{1-x}{1+x})$=$-lo{g}_{2}(\frac{1+x}{1-x})=-f(x)$,可知函数是奇函数;
(2)当x∈[-1,0)时,3x∈$[\frac{1}{3},1)$;$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$是增函数,$lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{1}{3}})$=1,
f(3x)∈[1,+∞).
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,函数 f(x)的最大值:$f(\frac{2}{3})=lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{2}{3}})$=log25.
函数$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,
$g(x)=lo{g}_{\sqrt{2}}\frac{k}{1-x}$是增函数,g(x)<$g(\frac{2}{3})=lo{g}_{\sqrt{2}}\frac{k}{1-\frac{2}{3}}$=$lo{g}_{\sqrt{2}}3k$
可得$lo{g}_{2}5>lo{g}_{\sqrt{2}}\frac{k}{1-x}$,$lo{g}_{2}5>lo{g}_{\sqrt{2}}(3k)$,
可得:0<k$<\frac{\sqrt{5}}{3}$.

点评 本题考查函数与方程的综合应用,函数的奇偶性以及函数的单调性,函数恒成立,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程($\frac{1}{2}$)x=$\frac{1}{1-a}$有一个正根,则实数a的取值范围是a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列命题:
①双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{x^2}{35}+{y^2}=1$有相同的焦点;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”的必要不充分条件;
③对于函数f(x)=x3-3x2,f(0)=0是极大值,f(2)=-4是极小值;
④?x∈R,x2-3x+3≠0.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合M={y|y=2x,x<-1},P={y|y=log2x,x≥1},则M∩P=(  )
A.$\{y|0<y<\frac{1}{2}\}$B.{y|0<y<1}C.$\{y|\frac{1}{2}<y<1\}$D.$\{y|0≤y<\frac{1}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=ax3+x+c在[a,b]上是奇函数,则a+b+c+2的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=x2+2B.y=|x|+1C.y=-|x|D.y=e|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若n∈N*,则1+2+22+23+…+2n+1=(  )
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,梯形ABCD中,AB∥CD,AD=BC=5,AB=10,CD=4,动点P自B点出发沿路线BC→CD→DA运动,最后到达A点你的P的运动路程为x,△ABP面积为y,试求y=f(x).

查看答案和解析>>

同步练习册答案