【题目】在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且∠AOB= , 求|OA|+|OB|的最大值.
【答案】解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2 .
∴曲线C是以(a,0)为圆心,以a为半径的圆;
由l:ρcos(θ﹣)=,展开为,
∴l的直角坐标方程为x+y﹣3=0.
由直线l与圆C相切可得=a,解得a=1.
(Ⅱ)不妨设A的极角为θ,B的极角为θ+,
则|OA|+|OB|=2cosθ+2cos(θ+)
=3cosθ﹣sinθ=2cos(θ+),
当θ=﹣时,|OA|+|OB|取得最大值2.
【解析】(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;
(II)不妨设A的极角为θ,B的极角为θ+ , 则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣alnx++x(a≠0)
(I)若曲线y=f(x)在点(1,f(1)))处的切线与直线x﹣2y=0垂直,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a∈(﹣∞,0)时,记函数f(x)的最小值为g(a),求证:g(a)≤﹣e﹣4 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是( )
A.x3>y3
B.sinx>siny
C.ln(x2+1)>ln(y2+1)
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,且离心率为.
(1)求椭圆方程;
(2)斜率为的直线过点,且与椭圆交于两点, 为直线上的一点,若△为等边三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣mx+m,m、x∈R.
(1)若关于x的不等式f(x)>0的解集为R,求m的取值范围;
(2)若实x1 , x2数满足x1<x2 , 且f(x1)≠f(x2),证明:方程f(x)= [f(x1)+f(x2)]至少有一个实根x0∈(x1 , x2);
(3)设F(x)=f(x)+1﹣m﹣m2 , 且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com