精英家教网 > 高中数学 > 题目详情
已知cos(α+β)=
5
13
cosβ=
4
5
α,β∈(0,
π
2
)
,求cosα及sin(α+2β)的值.
分析:(1)先利用同角三角函数的基本关系和α、β的范围,求得sin(α+β)和sinβ的值,进而根据cosα=cos[(α+β)-β]利用余弦函数的两角差公式求得答案.
(2)根据已知,利用同角三角函数的基本关系求得sin(α+β)和sinβ的值,进而根据sin(α+2β)=sin[(α+β)+β]利用两角和正弦公式求得答案.
解答:解:∵α,β∈(0,
π
2
)
,∴α+β∈(0,π)
∴sin(α+β)=
1-co  s2(α+β) 
=
1-(
5
13
)
2
=
12
13

∴sinβ=
1-cos2β
=
1-(
4
5
)
2
=
3
5

cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ
=
5
13
×
4
5
+
12
13
×
3
5

=
56
65

sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ
=
12
13
×
4
5
5
13
× 
3
5

=
63
65
点评:本题考查两角和与差的三角函数公式的应用,本题要注意运用角的整体代换α=(α+β)-β,α+2β=(α+β)+β.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(
π
4
+x)=
4
5
17π
12
<x<
4
,求
sin2x-2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-
π
2
)=
3
5
,则sin2α-cos2α的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=-
4
5
,α∈(π,
2
),求tan(α+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知cosα=-
4
5
,求sinα,tanα.
(2)已知tan(π+α)=3,求:
2cos(π-α)-3sin(π+α)
4cos(-α)+sin(2π-α)
的值.

查看答案和解析>>

同步练习册答案