精英家教网 > 高中数学 > 题目详情

【题目】谢尔宾斯基三角形(Sierpinskitriangle)是一种分形几何图形,由波兰数学家谢尔宾斯基在1915年提出,它是一个自相似的例子,其构造方法是:

1)取一个实心的等边三角形(图1);

2)沿三边中点的连线,将它分成四个小三角形;

3)挖去中间的那一个小三角形(图2);

4)对其余三个小三角形重复(1)(2)(3)(4)(图3.

制作出来的图形如图4,图5….

若图3(阴影部分)的面积为1,则图5(阴影部分)的面积为(

A.B.C.D.

【答案】A

【解析】

先求出图1,2,3的阴影部分面积,根据合情推理归纳规律可知,面积构成等比数列,即可求解.

设图1的面积为,图2被挖去的面积占图1面积的,则图2阴影部分的面积为

同理图3被挖去的面积占图2面积的

所以图3阴影部分的面积为

按此规律图1、图2、图3…的面积组成等比数列:,公比为.

若图3阴影部分的面积为1,则图5阴影部分的面积为

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,,,侧面底面,是等边三角形,,点分别是棱的中点 .

(Ⅰ)求证:平面

(Ⅱ)求二面角的大小;

(Ⅲ)在线段上存在一点,使平面,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当时,求曲线在点处的切线方程;

(2)讨论的单调性;

(3)若有两个零点,求的取值范围(只需直接写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.

1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?

2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;

3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)设函数,求函数的单调区间;

3)若在上存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在位于城市A南偏西相距100海里的B处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为海里

1)若,求台风影响城市A持续的时间(精确到1分钟)?

2)若台风影响城市A持续的时间不超过1小时,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

同步练习册答案