【题目】选修4-5:不等式选讲
已知函数,.
(1)当时,解关于的不等式;
(2)若对任意,都存在,使得不等式成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.
(1)试用x表示圆柱的高;
(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求, 据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数F(x)= 是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则( )
A.f(2)>e2f(0),f(2012)<e2012f(0)
B.f(2)<e2f(0),f(2012)<e2012f(0)
C.f(2)>e2f(0),f(2012)>e2012f(0)
D.f(2)<e2f(0),f(2012)>e2012f(0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为 ,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ)求椭圆E的方程;
(Ⅱ)判断ABCD能否为菱形,并说明理由.
(Ⅲ)当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表如下:
经常使用 | 偶尔或不用 | 合计 | |
岁及以下的人数 | |||
岁以上的人数 | |||
合计 |
(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?
(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取位市民,从这位市民中随机选出位市民赠送礼品,求选出的位市民中至少有位市民经常使用共享单车的概率.
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是 . (写出所有正确说法的序号)
①若p是q的充分不必要条件,则p是q的必要不充分条件;
②命题“x∈R,x2+1>3x”的否定是“x∈R,x2+1<3x”;
③设x,y∈R.命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求证: ≤an<an+1≤n+2;
(2)求证: + + +…+ <1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com