精英家教网 > 高中数学 > 题目详情
14.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点,O为坐标原点,若双曲线右支上存在一点P,使$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{{F}_{1}{F}_{2}}$|=|$\overrightarrow{P{F}_{2}}$|,则该双曲线的离心率为$\sqrt{2}$+1.

分析 由题意,P(c,2c),代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得e4-6e2+1=0,即可得出双曲线的离心率.

解答 解:由题意,P(c,2c),
代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4{c}^{2}}{{b}^{2}}$=1,
∴e4-6e2+1=0
∴e=$\sqrt{2}$+1.
故答案为:$\sqrt{2}$+1.

点评 本题着重考查了双曲线的定义与简单几何性质等知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在二项式${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,前三项系数的绝对值成等差数列.
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\sqrt{x+1}$-ln(2-x)的定义域为(  )
A.(2,+∞)B.(-1,+∞)C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-$\frac{(x-1)^{2}}{2}$,g(x)=x-1.
(1)求函数f(x)的单调递减区间;
(2)若关于x的方程f(x)-g(x)+a=0在区间($\frac{1}{e}$,e)上有两个不等的根,求实数a的取值范围;
(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)>kg(x),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求$\underset{lim}{x→∞}$[xln(1-$\frac{1}{3x}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x-1的定义域是[-1,2].
(1)求f(x-2)的定义域;
(2)求f(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知变量x,y满足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范围为[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.直棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD;
(3)当$\frac{BD}{AB}$=$\frac{3}{7}$时,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.正三棱锥P-ABC中,(△ABC是正三角形,点P在平面ABC的射影是△ABC的中心)侧棱PA与底面ABC成60°角,若AB=2$\sqrt{3}$,则P到平面ABC的距离是2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案