精英家教网 > 高中数学 > 题目详情
13.用适当的符号填空:1∈N           {a}⊆ {a,b,c}          2.1∈Z
{a,b,c}={a,b,c}              N?N*

分析 利用元素与集合、集合与集合的关系,即可得出结论.

解答 解:由题意,1∈N;{a}⊆{a,b,c};1∈Z;{a,b,c}={a,b,c};N?N*
故答案为:∈;⊆;∈;=;?

点评 本题考查元素与集合、集合与集合的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知sinθcosθ=$\frac{60}{169}$,且$\frac{π}{4}$<θ<$\frac{π}{2}$,则sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,则f(-$\frac{31π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$sinx,cos2x).函数f(x)=-$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)写出函数f(x)的最小正周期和对称轴方程
(2)求函数f(x)的单调区间.
(3)当x∈[-$\frac{π}{6}$,$\frac{π}{2}$]时求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题p:?x∈R,均有x2≥0,则?p为(  )
A.?x0∈R,使得x2≤0B.?x∈R,均有x2≤0C.?x0∈R,使得x02<0D.?x∈R,均有x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ax2+bx+c,f(0)=2,f(1)=0,f(-1)=6
(1)求f(x)的解析式
(2)求f(x)的定义域,值域
(3)画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.则线段AB的中点M的轨迹C的方程是(  )
A.(x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1内)B.(x+$\frac{3}{2}$)2+y2=$\frac{9}{4}$
C.(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$(在C1内)D.(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A、B、C是△ABC的三内角,且满足2A,5B,2C成等差数列,则tanB的值为(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义max{a,b}表示实数a,b中的较大的数.已知数列{an}满足a1=a(a>0),a2=1,an+2=$\frac{2max\{{a}_{n+1,}2\}}{{a}_{n}}$(n∈N),若a2015=4a,记数列{an}的前n项和为Sn,则S2015的值为7254.

查看答案和解析>>

同步练习册答案